On a “mysterious” case of a quadratic Hamiltonian.
In this paper we analyze movable singularities of the solutions of the equation for self-similar profiles resulting from semilinear wave equation. We study local analytic solutions around two fixed singularity points of this equation- ρ = 0 and ρ = 1. The movable singularities of local analytic solutions at the origin will be connected with those of the Lane-Emden equation. The function describing approximately their position on the complex plane will be derived. For ρ > 1 some topological considerations...
We first introduce the notion of microdifferential operators of WKB type and then develop their exact WKB analysis using microlocal analysis; a recursive way of constructing a WKB solution for such an operator is given through the symbol calculus of microdifferential operators, and their local structure near their turning points is discussed by a Weierstrass-type division theorem for such operators. A detailed study of the Berk-Book equation is given in Appendix.