Displaying 301 – 320 of 401

Showing per page

Boundary value problems and duality between Lp Dirichlet and regularity problems for second order parabolic systems in non-cylindrical domains.

Kaj Nyström (2006)

Collectanea Mathematica

In this paper we consider general second order, symmetric and strongly elliptic parabolic systems with real valued and constant coefficients in the setting of a class of time-varying, non-smooth infinite cylindersΩ = {(x0,x,t) ∈ R x Rn-1 x R: x0 > A(x,t)}.We prove solvability of Dirichlet, Neumann as well as regularity type problems with data in Lp and Lp1,1/2 (the parabolic Sobolev space having tangential (spatial) gradients and half a time derivative in Lp) for p ∈ (2 − ε, 2 + ε) assuming...

Boundary value problems and layer potentials on manifolds with cylindrical ends

Marius Mitrea, Victor Nistor (2007)

Czechoslovak Mathematical Journal

We study the method of layer potentials for manifolds with boundary and cylindrical ends. The fact that the boundary is non-compact prevents us from using the standard characterization of Fredholm or compact pseudo-differential operators between Sobolev spaces, as, for example, in the works of Fabes-Jodeit-Lewis and Kral-Wedland . We first study the layer potentials depending on a parameter on compact manifolds. This then yields the invertibility of the relevant boundary integral operators in the...

Boundary value problems for elliptic equations.

Carlos E. Kenig (1991)

Publicacions Matemàtiques

In this note I will describe some recent results, obtained jointly with R. Fefferman and J. Pipher [RF-K-P], on the Dirichlet problem for second-order, divergence form elliptic equations, and some work in progress with J. Pipher [K-P] on the corresponding results for the Neumann and regularity problems.

Currently displaying 301 – 320 of 401