-regularity of the Aronsson equation in
We prove the Hölder continuity of the homogeneous gradient of the weak solutions of the p-Laplacian on the Heisenberg group , for .
In this paper we prove the -well posedness of the Cauchy problem for quasi-linear hyperbolic equations of second order with coefficients non-Lipschitz in t ∈ [0,T] and smooth in x ∈ ℝⁿ.
Caccioppoli estimates are instrumental in virtually all analytic aspects of the theory of partial differential equations, linear and nonlinear. And there is always something new to add to these estimates. We emphasize the fundamental role of the natural domain of definition of a given differential operator and the associated weak solutions. However, we depart from this usual setting (energy estimates) and move into the realm of the so-called very weak solutions where important new applications lie....
Soit un opérateur pseudodifférentiel (ou microdifférentiel) tel que soit aussi un opérateur pseudodifférentiel. Alors le symbole de s’ecrit avec un symbole . Pour la réciproque, si est un opérateur à symbole , il existe un opérateur tel que . Tous ces résultats reposent sur la théorie développée dans la Note I de cette série. Comme application, on obtient une condition suffisante d’inversibilité pour les opérateurs pseudodifférentiels d’ordre infini.
Cet article s’intéresse au calcul symbolique des opérateurs microdifférentiels avec symboles exponentiels. On donne la loi de composition des symboles exponentiels. Comme application, on trouve une condition suffisante d’ellipticité pour les opérateurs microdifférentiels d’ordre infini.