estimates for solutions to non-uniformly elliptic PDE'S with measurable coefficients.
In this paper, we review recent results on wall laws for viscous fluids near rough surfaces, of small amplitude and wavelength ε. When the surface is “genuinely rough”, the wall law at first order is the Dirichlet wall law: the fluid satisfies a “no-slip” boundary condition on the homogenized surface. We compare the various mathematical characterizations of genuine roughness, and the corresponding homogenization results. At the next order, under...
We study the Fokker–Planck equation as the many-particle limit of a stochastic particle system on one hand and as a Wasserstein gradient flow on the other. We write the path-space rate functional, which characterises the large deviations from the expected trajectories, in such a way that the free energy appears explicitly. Next we use this formulation via the contraction principle to prove that the discrete time rate functional is asymptotically equivalent in the Gamma-convergence sense to the functional...
The uniqueness theorem is proved for the linearized problem describing radiation and scattering of time-harmonic water waves by a vertical shell having an arbitrary horizontal cross-section. The uniqueness holds for all frequencies, and various locations of the shell are possible: surface-piercing, totally immersed and bottom-standing. A version of integral equation technique is outlined for finding a solution.
Let L be the distinguished Laplacian on certain semidirect products of ℝ by ℝⁿ which are of ax + b type. We prove pointwise estimates for the convolution kernels of spectrally localized wave operators of the form for arbitrary time t and arbitrary λ > 0, where ψ is a smooth bump function supported in [-2,2] if λ ≤ 1 and in [1,2] if λ ≥ 1. As a corollary, we reprove a basic multiplier estimate of Hebisch and Steger [Math. Z. 245 (2003)] for this particular class of groups, and derive Sobolev...
A tempered distribution which is an exact solution of the wave equation with a concentrated moving source on the right-hand side, is obtained in the paper by means of the Cagniard - de Hoop method.
In this paper, we consider one-dimensional wave equation with real-valued square-summable potential. We establish the long-time asymptotics of solutions by, first, studying the stationary problem and, second, using the spectral representation for the evolution equation. In particular, we prove that part of the wave travels ballistically if q ∈ L2(ℝ+) and this result is sharp.
Let WF⁎ be the wave front set with respect to , quasi analyticity or analyticity, and let K be the kernel of a positive operator from to ’. We prove that if ξ ≠ 0 and (x,x,ξ,-ξ) ∉ WF⁎(K), then (x,y,ξ,-η) ∉ WF⁎(K) and (y,x,η,-ξ) ∉ WF⁎(K) for any y,η. We apply this property to positive elements with respect to the weighted convolution , where is appropriate, and prove that if for every and (0,ξ) ∉ WF⁎(u), then (x,ξ) ∉ WF⁎(u) for any x.
This paper contains several recent results about nonlinear systems of hyperbolic conservation laws obtained through the technique of Wave Front Tracking.
1. This paper is devoted to the study of wave fronts of solutions of first order symmetric systems of non-linear partial differential equations. A short communication was published in [4]. The microlocal point of view enables us to obtain more precise information concerning the smoothness of solutions of symmetric hyperbolic systems. Our main result is a generalization to the non-linear case of Theorem 1.1 of Ivriĭ [3]. The machinery of paradifferential operators introduced by Bony [1] together...
The existence of a traveling wave with special properties to modified KdV and BKdV equations is proved. Nonlinear terms in the equations are defined by means of a function f of an unknown u satisfying some conditions.
The challenges to live in the open water and the diversity of habitats in the marine environments prompts phytoplankton to devise strategies which often involve production of toxins by Harmful Algal Bloom (HAB) and rapid production of metabolites from non-toxic precursor. The functional response of the predator is described by Holling type IV. We investigate wave phenomena and non-linear non-equilibrium pattern formation in a phytoplankton-zooplankton system with Holling type IV functional response....
2000 Mathematics Subject Classification: Primary: 34L25; secondary: 47A40, 81Q10.In this article we prove that the wave operators describing the direct scattering of the defocusing matrix Zakharov-Shabat system with potentials having distinct nonzero values with the same modulus at ± ∞ exist, are asymptotically complete, and lead to a unitary scattering operator. We also prove that the free Hamiltonian operator is absolutely continuous.