-harmonic maps which map the boundary of the domain to one point in the target.
We investigate the role of Hertling-Manin condition on the structure constants of an associative commutative algebra in the theory of integrable systems of hydrodynamic type. In such a framework we introduce the notion of -manifold with compatible connection generalizing a structure introduced by Manin.
Theoretical studies and numerical experiments suggest that unstructured high-order methods can provide solutions to otherwise intractable fluid flow problems within complex geometries. However, it remains the case that existing high-order schemes are generally less robust and more complex to implement than their low-order counterparts. These issues, in conjunction with difficulties generating high-order meshes, have limited the adoption of high-order...
For the hypoelliptic differential operators introduced by T. Hoshiro, generalizing a class of M. Christ, in the cases of and left open in the analysis, the operators also fail to be analytic hypoelliptic (except for ), in accordance with Treves’ conjecture. The proof is constructive, suitable for generalization, and relies on evaluating a family of eigenvalues of a non-self-adjoint operator.
On montre que le faisceau des sursolutions locales dans d’un certain opérateur elliptique est maximal pour un principe du minimum adapté aux espaces de Sobolev. La continuité de la réduite variationnelle des éléments continus permet alors d’étudier des représentants s.c.i.
Soit le faisceau des sursolutions variationnelles d’un opérateur différentiel elliptique du second ordre à coefficients . Soit le faisceau des régularitées essentielles inférieures des éléments de . On démontre que est contenu dans un seul préfaisceau maximal de cônes convexes de fonctions s.c.i. vérifiant le principe du minimum sur une base d’ouverts suffisamment petits. On démontre que possède toutes les bonnes propriétés d’une théorie locale du potentiel.
On every reduced complex space we construct a family of complexes of soft sheaves ; each of them is a resolution of the constant sheaf and induces the ordinary De Rham complex of differential forms on a dense open analytic subset of . The construction is functorial (in a suitable sense). Moreover each of the above complexes can fully describe the mixed Hodge structure of Deligne on a compact algebraic variety.
Pour localiser la solution d’un système de diffusion-réaction, il suffit de construire une famille de convexes , invariante par rapport au champ de vecteurs associé à ce système; la solution est alors incluse dans à l’instant dès qu’elle est contenue dans à l’instant zéro. Les fonctions d’appui associées à de telles familles de convexes sont solutions d’un système différentiel, mais celui-ci peut également engendrer des familles non invariantes.
We consider a general elliptic Robin boundary value problem. Using orthogonal Coifman wavelets (Coiflets) as basis functions in the Galerkin method, we prove that the rate of convergence of an approximate solution to the exact one is O(2−nN ) in the H 1 norm, where n is the level of approximation and N is the Coiflet degree. The Galerkin method needs to evaluate a lot of complicated integrals. We present a structured approach for fast and effective evaluation of these integrals via trivariate connection...
In this paper a black-box solver based on combining the unknowns aggregation with smoothing is suggested. Convergence is improved by overcorrection. Numerical experiments demonstrate the efficiency.