Page 1 Next

Displaying 1 – 20 of 373

Showing per page

F -manifolds and integrable systems of hydrodynamic type

Paolo Lorenzoni, Marco Pedroni, Andrea Raimondo (2011)

Archivum Mathematicum

We investigate the role of Hertling-Manin condition on the structure constants of an associative commutative algebra in the theory of integrable systems of hydrodynamic type. In such a framework we introduce the notion of F -manifold with compatible connection generalizing a structure introduced by Manin.

Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists

P. E. Vincent, A. Jameson (2011)

Mathematical Modelling of Natural Phenomena

Theoretical studies and numerical experiments suggest that unstructured high-order methods can provide solutions to otherwise intractable fluid flow problems within complex geometries. However, it remains the case that existing high-order schemes are generally less robust and more complex to implement than their low-order counterparts. These issues, in conjunction with difficulties generating high-order meshes, have limited the adoption of high-order...

Failure of analytic hypoellipticity in a class of differential operators

Ovidiu Costin, Rodica D. Costin (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

For the hypoelliptic differential operators P = x 2 + x k y - x l t 2 introduced by T. Hoshiro, generalizing a class of M. Christ, in the cases of k and l left open in the analysis, the operators P also fail to be analytic hypoelliptic (except for ( k , l ) = ( 0 , 1 ) ), in accordance with Treves’ conjecture. The proof is constructive, suitable for generalization, and relies on evaluating a family of eigenvalues of a non-self-adjoint operator.

Faisceaux d'espaces de Sobolev et principes du minimum

Denis Feyel, A. de La Pradelle (1975)

Annales de l'institut Fourier

On montre que le faisceau des sursolutions locales dans W loc 2 d’un certain opérateur elliptique L est maximal pour un principe du minimum adapté aux espaces de Sobolev. La continuité de la réduite variationnelle des éléments continus permet alors d’étudier des représentants s.c.i.

Faisceaux maximaux de fonctions associées à un opérateur elliptique du second ordre

Denis Feyel, A. de La Pradelle (1976)

Annales de l'institut Fourier

Soit F le faisceau des sursolutions variationnelles d’un opérateur différentiel elliptique du second ordre à coefficients L loc . Soit F ^ le faisceau des régularitées essentielles inférieures des éléments de F . On démontre que F ^ est contenu dans un seul préfaisceau F * maximal de cônes convexes de fonctions s.c.i. > - vérifiant le principe du minimum sur une base d’ouverts suffisamment petits. On démontre que F * possède toutes les bonnes propriétés d’une théorie locale du potentiel.

Families of differential forms on complex spaces

Vincenzo Ancona, Bernard Gaveau (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

On every reduced complex space X we construct a family of complexes of soft sheaves Λ X ; each of them is a resolution of the constant sheaf X and induces the ordinary De Rham complex of differential forms on a dense open analytic subset of X . The construction is functorial (in a suitable sense). Moreover each of the above complexes can fully describe the mixed Hodge structure of Deligne on a compact algebraic variety.

Familles de convexes invariantes et équations de diffusion-réaction

Christine Reder (1982)

Annales de l'institut Fourier

Pour localiser la solution d’un système de diffusion-réaction, il suffit de construire une famille de convexes ( K t ) t 0 , invariante par rapport au champ de vecteurs associé à ce système; la solution est alors incluse dans K t à l’instant t dès qu’elle est contenue dans K 0 à l’instant zéro. Les fonctions d’appui associées à de telles familles de convexes sont solutions d’un système différentiel, mais celui-ci peut également engendrer des familles non invariantes.

Fast convergence of the Coiflet-Galerkin method for general elliptic BVPs

Hani Akbari (2013)

International Journal of Applied Mathematics and Computer Science

We consider a general elliptic Robin boundary value problem. Using orthogonal Coifman wavelets (Coiflets) as basis functions in the Galerkin method, we prove that the rate of convergence of an approximate solution to the exact one is O(2−nN ) in the H 1 norm, where n is the level of approximation and N is the Coiflet degree. The Galerkin method needs to evaluate a lot of complicated integrals. We present a structured approach for fast and effective evaluation of these integrals via trivariate connection...

Fast multigrid solver

Petr Vaněk (1995)

Applications of Mathematics

In this paper a black-box solver based on combining the unknowns aggregation with smoothing is suggested. Convergence is improved by overcorrection. Numerical experiments demonstrate the efficiency.

Currently displaying 1 – 20 of 373

Page 1 Next