-Laplacian equations in with critical growth.
A new variational principle and duality for the problem Lu = ∇G(u) are provided, where L is a positive definite and selfadjoint operator and ∇G is a continuous gradient mapping such that G satisfies superquadratic growth conditions. The results obtained may be applied to Dirichlet problems for both ordinary and partial differential equations.
We discuss the solvability of a nonhomogeneous boundary value problem for the semilinear equation of the vibrating string in a bounded domain and with a certain type of superlinear nonlinearity. To this end we derive a new dual variational method.
We investigate some nonlinear elliptic problems of the form where is a regular bounded domain in , , a positive function in , and the nonlinearity is indefinite. We prove the existence of solutions to the problem (P) when the function is asymptotically linear at infinity by using variational method but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the nonlinearities are superlinear and subcritical.
In this paper we study the existence of minimizer for certain constrained variational problems given by functionals with nonlocal terms. This type of functionals are first integrals of evolution equations describing long wave propagation and the existence of minimizer gives the existence and the stability of traveling waves for these equations. Due to loss of compactness, the major problem is to prevent dichotomy of minimizing sequences. Our approach is an alternative to the concentration-compactness...
Using a version of the Local Linking Theorem and the Fountain Theorem, we obtain some existence and multiplicity results for a class of superquadratic elliptic equations.