Displaying 1281 – 1300 of 1615

Showing per page

Symmetry of minimizers with a level surface parallel to the boundary

Giulio Ciraolo, Rolando Magnanini, Shigeru Sakaguchi (2015)

Journal of the European Mathematical Society

We consider the functional Ω ( v ) = Ω [ f ( | D v | ) - v ] d x , where Ω is a bounded domain and f is a convex function. Under general assumptions on f , Crasta [Cr1] has shown that if Ω admits a minimizer in W 0 1 , 1 ( Ω ) depending only on the distance from the boundary of Ω , then Ω must be a ball. With some restrictions on f , we prove that spherical symmetry can be obtained only by assuming that the minimizer has one level surface parallel to the boundary (i.e. it has only a level surface in common with the distance). We then discuss how these...

Symmetry of solutions of semilinear elliptic problems

Jean Van Schaftingen, Michel Willem (2008)

Journal of the European Mathematical Society

We study symmetry properties of least energy positive or nodal solutions of semilinear elliptic problems with Dirichlet or Neumann boundary conditions. The proof is based on symmetrizations in the spirit of Bartsch, Weth and Willem (J. Anal. Math., 2005) together with a strong maximum principle for quasi-continuous functions of Ancona and an intermediate value property for such functions.

Symmetry results for viscosity solutions of fully nonlinear uniformly elliptic equations

Francesca Da Lio, Boyan Sirakov (2007)

Journal of the European Mathematical Society

We study uniformly elliptic fully nonlinear equations F ( D 2 u , D u , u , x ) = 0 , and prove results of Gidas–Ni–Nirenberg type for positive viscosity solutions of such equations. We show that symmetries of the equation and the domain are reflected by the solution, both in bounded and unbounded domains.

Systems of Clairaut type

Shyuichi Izumiya (1993)

Colloquium Mathematicae

A characterization of systems of first order differential equations with (classical) complete solutions is given. Systems with (classical) complete solutions that consist of hyperplanes are also characterized.

Systems of meromorphic microdifferential equations

Orlando Neto (1996)

Banach Center Publications

We introduce the notion of system of meromorphic microdifferential equations. We use it to prove a desingularization theorem for systems of microdifferential equations.

Syzygies of modules and applications to propagation of regularity phenomena.

Alex Meril, Daniele C. Struppa (1990)

Publicacions Matemàtiques

Propagation of regularity is considered for solutions of rectangular systems of infinite order partial differential equations (resp. convolution equations) in spaces of hyperfunctions (resp. C∞ functions and distributions). Known resulys of this kind are recovered as particular cases, when finite order partial differential equations are considered.

Currently displaying 1281 – 1300 of 1615