Page 1 Next

Displaying 1 – 20 of 49

Showing per page

New existence and stability results for partial fractional differential inclusions with multiple delay

Saïd Abbas, Wafaa A. Albarakati, Mouffak Benchohra, Mohamed Abdalla Darwish, Eman M. Hilal (2015)

Annales Polonici Mathematici

We discuss the existence of solutions and Ulam's type stability concepts for a class of partial functional fractional differential inclusions with noninstantaneous impulses and a nonconvex valued right hand side in Banach spaces. An example is provided to illustrate our results.

New method to solve certain differential equations

Kazimierz Rajchel, Jerzy Szczęsny (2016)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

A new method to solve stationary one-dimensional Schroedinger equation is investigated. Solutions are described by means of representation of circles with multiple winding number. The results are demonstrated using the well-known analytical solutions of the Schroedinger equation.

New nonlinear Picone identities with variable exponents and applications

Hichem Khelifi, Youssef El Hadfi (2023)

Commentationes Mathematicae Universitatis Carolinae

This paper introduces two novel nonlinear anisotropic Picone identities with variable exponents that expand upon the traditional identity used for the ordinary Laplace equation. Additionally, the research explores potential applications of these findings in anisotropic Sobolev spaces featuring variable exponents.

New variational principle and duality for an abstract semilinear Dirichlet problem

Marek Galewski (2003)

Annales Polonici Mathematici

A new variational principle and duality for the problem Lu = ∇G(u) are provided, where L is a positive definite and selfadjoint operator and ∇G is a continuous gradient mapping such that G satisfies superquadratic growth conditions. The results obtained may be applied to Dirichlet problems for both ordinary and partial differential equations.

Non prolongement unique des solutions d'opérateurs «somme de carrés»

Hajer Bahouri (1986)

Annales de l'institut Fourier

Dans ce travail, nous avons montré que si P = i = 1 n - 1 x i 2 , où les x i sont des champs de vecteurs C linéairement independants dans un ouvert Ω de R n tels que l’algèbre de Lie qu’ils engendrent soit de rang maximum en tout point et la forme volume qu’on leur associe soit de classe 4 en un point x 0 de Ω , alors il existe un voisinage ouvert V de x 0 et une fonction a C ( V ) tels que P + a possède pas la propriété de prolongement unique.

Nonanalyticity of solutions to t u = ² x u + u ²

Grzegorz Łysik (2003)

Colloquium Mathematicae

It is proved that the solution to the initial value problem t u = ² x u + u ² , u(0,x) = 1/(1+x²), does not belong to the Gevrey class G s in time for 0 ≤ s < 1. The proof is based on an estimation of a double sum of products of binomial coefficients.

Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations

Qin Li, Qun Lin, Hehu Xie (2013)

Applications of Mathematics

The paper deals with error estimates and lower bound approximations of the Steklov eigenvalue problems on convex or concave domains by nonconforming finite element methods. We consider four types of nonconforming finite elements: Crouzeix-Raviart, Q 1 rot , E Q 1 rot and enriched Crouzeix-Raviart. We first derive error estimates for the nonconforming finite element approximations of the Steklov eigenvalue problem and then give the analysis of lower bound approximations. Some numerical results are presented to...

Nonhomogeneous boundary value problem for a semilinear hyperbolic equation

Andrzej Nowakowski (2008)

Applicationes Mathematicae

We discuss the solvability of a nonhomogeneous boundary value problem for the semilinear equation of the vibrating string x t t ( t , y ) - Δ x ( t , y ) + f ( t , y , x ( t , y ) ) = 0 in a bounded domain and with a certain type of superlinear nonlinearity. To this end we derive a new dual variational method.

Nonlinear boundary value problems involving the extrinsic mean curvature operator

Jean Mawhin (2014)

Mathematica Bohemica

The paper surveys recent results obtained for the existence and multiplicity of radial solutions of Dirichlet problems of the type · v 1 - | v | 2 = f ( | x | , v ) in B R , u = 0 on B R , where B R is the open ball of center 0 and radius R in n , and f is continuous. Comparison is made with similar results for the Laplacian. Topological and variational methods are used and the case of positive solutions is emphasized. The paper ends with the case of a general domain.

Currently displaying 1 – 20 of 49

Page 1 Next