Sur quelques problèmes à frontière libre analytique dans le plan
The (infinitesimal) symmetries of first and second-order partial differential equations represented by connections on fibered manifolds are studied within the framework of certain “strong horizontal“ structures closely related to the equations in question. The classification and global description of the symmetries is presented by means of some natural compatible structures, eġḃy vertical prolongations of connections.
We consider the functional where is a bounded domain and is a convex function. Under general assumptions on , Crasta [Cr1] has shown that if admits a minimizer in depending only on the distance from the boundary of , then must be a ball. With some restrictions on , we prove that spherical symmetry can be obtained only by assuming that the minimizer has one level surface parallel to the boundary (i.e. it has only a level surface in common with the distance). We then discuss how these...
We study symmetry properties of least energy positive or nodal solutions of semilinear elliptic problems with Dirichlet or Neumann boundary conditions. The proof is based on symmetrizations in the spirit of Bartsch, Weth and Willem (J. Anal. Math., 2005) together with a strong maximum principle for quasi-continuous functions of Ancona and an intermediate value property for such functions.