The search session has expired. Please query the service again.
Using the idea of the optimal decomposition developed in recent papers (Edmunds-Krbec, 2000) and in Cruz-Uribe-Krbec we study the boundedness of the operator Tg(x) = ∫x1 g(u)du / u, x ∈ (0,1), and its logarithmic variant between Lorentz spaces and exponential Orlicz and Lorentz-Orlicz spaces. These operators are naturally linked with Moser's lemma, O'Neil's convolution inequality, and estimates for functions with prescribed rearrangement. We give sufficient conditions for and very simple proofs...
We study the system of PDEs describing unsteady flows of incompressible fluids with variable density and non-constant viscosity. Indeed, one considers a stress tensor being a nonlinear function of the symmetric velocity gradient, verifying the properties of -coercivity and -growth, for a given parameter . The existence of Dirichlet weak solutions was obtained in [2], in the cases if or if , being the dimension of the domain. In this paper, with help of some new estimates (which lead...
The Leray-Schauder degree is extended to certain multi-valued mappings on separable Hilbert spaces with applications to the existence of weak periodic solutions of discontinuous semilinear wave equations with fixed ends.
Building upon the techniques introduced in [15], for any we construct periodic weak solutions of the incompressible Euler equations which dissipate the total kinetic energy and are Hölder-continuous with exponent . A famous conjecture of Onsager states the existence of such dissipative solutions with any Hölder exponent . Our theorem is the first result in this direction.
In the paper, time-periodic solutions to dynamic von Kármán equations are investigated. Assuming that there is a damping term in the equations we are able to show the existence of at least one solution to the problem. The Faedo-Galerkin method is used together with some basic ideas concerning monotone operators on Orlicz spaces.
Currently displaying 1 –
6 of
6