Enhancement of the traveling front speeds in reaction-diffusion equations with advection
Soit un sous-différentiel (non coercif) dans un espace de Hilbert.On étudie l’existence de solutions bornées ou périodiques pour l’équationDeux solutions périodiques éventuelles diffèrent d’une constante. Si est périodique et compact, toute trajectoire bornée est asymptote pour à une trajectoire périodique.
The authors prove the global existence and exponential stability of solutions of the given system of equations under the condition that the initial velocities and the external forces are small and the initial density is not far from a constant one. If the external forces are periodic, then solutions periodic with the same period are obtained. The investigated system of equations is a bit non-standard - for example the displacement current in the Maxwell equations is not neglected.
For a family of elliptic operators with rapidly oscillating periodic coefficients, we study the convergence rates for Dirichlet eigenvalues and bounds of the normal derivatives of Dirichlet eigenfunctions. The results rely on an estimate in for solutions with Dirichlet condition.
The theory of maximal monotone operators is applied to prove the existence of weak periodic solutions for a nonlinear nonlocal problem. The stability of these solutions is a consequence of the Lipschitz continuous assumption on the diffusivity matrix and the death rate.
We consider a class of degenerate reaction-diffusion equations on a bounded domain with nonlinear flux on the boundary. These problems arise in the mathematical modelling of flow through porous media. We prove, under appropriate hypothesis, the existence and uniqueness of the nonnegative weak periodic solution. To establish our result, we use the Schauder fixed point theorem and some regularizing arguments.
In this paper, we are concerned with the semilinear parabolic equation ∂u/∂t - Δu = g(t,x,u) if u = 0 if , where is a bounded domain with smooth boundary ∂Ω and is T-periodic with respect to the first variable. The existence and the multiplicity of T-periodic solutions for this problem are shown when g(t,x,ξ)/ξ lies between two higher eigenvalues of - Δ in Ω with the Dirichlet boundary condition as ξ → ±∞.