The beam operator and the Fučík spectrum
In this paper, the existence of an -periodic weak solution of a parabolic equation (1.1) with the boundary conditions (1.2) and (1.3) is proved. The real functions are assumed to be -periodic in such that and they fulfil (3). The solution belongs to the space , has the derivative and satisfies the equations (4.1) and (4.2). In the proof the Faedo-Galerkin method is employed.
The existence of the Hopf bifurcation for parabolic functional equations with delay of maximum order in spatial derivatives is proved. An application to an integrodifferential equation with a singular kernel is given.
We study the motion of a viscous incompressible fluid filling the whole three-dimensional space exterior to a rigid body, that is rotating with constant angular velocity ω, under the action of external force f. By using a frame attached to the body, the equations are reduced to (1.1) in a fixed exterior domain D. Given f = divF with , we consider this problem in D × ℝ and prove that there exists a unique solution when F and |ω| are sufficiently small. If, in particular, the external force for...
This paper is devoted to some nonlinear propagation phenomena in periodic and more general domains, for reaction-diffusion equations with Kolmogorov–Petrovsky–Piskunov (KPP) type nonlinearities. The case of periodic domains with periodic underlying excitable media is a follow-up of the article [7]. It is proved that the minimal speed of pulsating fronts is given by a variational formula involving linear eigenvalue problems. Some consequences concerning the influence of the geometry of the domain,...
The author investigates time-periodic solutions of the quasilinear beam equation with the help of accelerated convergence methods. Using the Newton iteration scheme, the problem is approximated by a sequence of linear equations solved via the Galerkin method. The derivatiove loss inherent to this kind of problems is compensated by taking advantage of smoothing operators.
We study boundary value problems for quasilinear parabolic equations when the initial condition is replaced by periodicity in the time variable. Our approach is to relate the theory of such problems to the classical theory for initial-boundary value problems. In the process, we generalize many previously known results.