Contrôlabilité exacte pour des systèmes à mèmoire.
Combining HUM and compactness arguments the exact controllability is prove for time dependent smooth kernels.
Combining HUM and compactness arguments the exact controllability is prove for time dependent smooth kernels.
We prove that the entropy solutions of the so-called relativistic heat equation converge to solutions of the heat equation as the speed of light c tends to ∞ for any initial condition u0 ≥ 0 in L1(RN) ∩ L∞(RN).
Iterative approximation algorithms are successfully applied in parametric approximation tasks. In particular, reduced basis methods make use of the so-called Greedy algorithm for approximating solution sets of parametrized partial differential equations. Recently, a priori convergence rate statements for this algorithm have been given (Buffa et al. 2009, Binev et al. 2010). The goal of the current study is the extension to time-dependent problems, which are typically approximated using the POD–Greedy...
In this paper we present a few results on convergence for the prime integrals equations connected with the bounce problem. This approach allows both to prove uniqueness for the one-dimensional bounce problem for almost all permissible Cauchy data (see also [6]) and to deepen previous results (see [3], [5], [7]).