Displaying 101 – 120 of 153

Showing per page

Numerical Approximations of the Dynamical System Generated by Burgers’ Equation with Neumann–Dirichlet Boundary Conditions

Edward J. Allen, John A. Burns, David S. Gilliam (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Using Burgers’ equation with mixed Neumann–Dirichlet boundary conditions, we highlight a problem that can arise in the numerical approximation of nonlinear dynamical systems on computers with a finite precision floating point number system. We describe the dynamical system generated by Burgers’ equation with mixed boundary conditions, summarize some of its properties and analyze the equilibrium states for finite dimensional dynamical systems that are generated by numerical approximations of this...

On bifurcation intervals for nonlinear eigenvalue problems

Jolanta Przybycin (1999)

Annales Polonici Mathematici

We give a sufficient condition for [μ-M, μ+M] × {0} to be a bifurcation interval of the equation u = L(λu + F(u)), where L is a linear symmetric operator in a Hilbert space, μ ∈ r(L) is of odd multiplicity, and F is a nonlinear operator. This abstract result provides an elementary proof of the existence of bifurcation intervals for some eigenvalue problems with nondifferentiable nonlinearities. All the results obtained may be easily transferred to the case of bifurcation from infinity.

On the existence of nontrivial solutions for modified fractional Schrödinger-Poisson systems via perturbation method

Atefe Goli, Sayyed Hashem Rasouli, Somayeh Khademloo (2025)

Applications of Mathematics

The existence of nontrivial solutions is considered for the fractional Schrödinger-Poisson system with double quasi-linear terms: ( - Δ ) s u + V ( x ) u + φ u - 1 2 u ( - Δ ) s u 2 = f ( x , u ) , x 3 , ( - Δ ) t φ = u 2 , x 3 , where ( - Δ ) α is the fractional Laplacian for α = s , t ( 0 , 1 ] with s < t and 2 t + 4 s > 3 . Under assumptions on V and f , we prove the existence of positive solutions and negative solutions for the above system by using perturbation method and the mountain pass theorem.

Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions

Jan Eisner (2000)

Mathematica Bohemica

Sufficient conditions for destabilizing effects of certain unilateral boundary conditions and for the existence of bifurcation points for spatial patterns to reaction-diffusion systems of the activator-inhibitor type are proved. The conditions are related with the mollification method employed to overcome difficulties connected with empty interiors of appropriate convex cones.

Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions II, Examples

Jan Eisner (2001)

Mathematica Bohemica

The destabilizing effect of four different types of multivalued conditions describing the influence of semipermeable membranes or of unilateral inner sources to the reaction-diffusion system is investigated. The validity of the assumptions sufficient for the destabilization which were stated in the first part is verified for these cases. Thus the existence of points at which the spatial patterns bifurcate from trivial solutions is proved.

Currently displaying 101 – 120 of 153