Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation
We address the problem of the existence of finite energy solitary waves for nonlinear Klein-Gordon or Schrödinger type equations in , , where . Under natural conditions on the nonlinearity , we prove the existence of in any dimension . Our result complements earlier works of Bartsch and Willem and Lorca-Ubilla where solutions invariant under the action of are constructed. In contrast, the solutions we construct are invariant under the action of where denotes the dihedral group...