Page 1

Displaying 1 – 8 of 8

Showing per page

Blow up for a completely coupled Fujita type reaction-diffusion system

Noureddine Igbida, Mokhtar Kirane (2002)

Colloquium Mathematicae

This paper provides blow up results of Fujita type for a reaction-diffusion system of 3 equations in the form u - Δ ( a 11 u ) = h ( t , x ) | v | p , v - Δ ( a 21 u ) - Δ ( a 22 v ) = k ( t , x ) | w | q , w - Δ ( a 31 u ) - Δ ( a 32 v ) - Δ ( a 33 w ) = l ( t , x ) | u | r , for x N , t > 0, p > 0, q > 0, r > 0, a i j = a i j ( t , x , u , v ) , under initial conditions u(0,x) = u₀(x), v(0,x) = v₀(x), w(0,x) = w₀(x) for x N , where u₀, v₀, w₀ are nonnegative, continuous and bounded functions. Subject to conditions on dependence on the parameters p, q, r, N and the growth of the functions h, k, l at infinity, we prove finite blow up time for every solution of the above system,...

Blow-up of nonnegative solutions to quasilinear parabolic inequalities

Stanislav I. Pohozaev, Alberto Tesei (2000)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We investigate critical exponents for blow-up of nonnegative solutions to a class of parabolic inequalities. The proofs make use of a priori estimates of solutions combined with a simple scaling argument.

Blow-up of weak solutions for the semilinear wave equations with nonlinear boundary and interior sources and damping

Lorena Bociu, Irena Lasiecka (2008)

Applicationes Mathematicae

We focus on the blow-up in finite time of weak solutions to the wave equation with interior and boundary nonlinear sources and dissipations. Our central interest is the relationship of the sources and damping terms to the behavior of solutions. We prove that under specific conditions relating the sources and the dissipations (namely p > m and k > m), weak solutions blow up in finite time.

Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities

Philippe Souplet, Slim Tayachi (2001)

Colloquium Mathematicae

Consider the nonlinear heat equation (E): u t - Δ u = | u | p - 1 u + b | u | q . We prove that for a large class of radial, positive, nonglobal solutions of (E), one has the blowup estimates C ( T - t ) - 1 / ( p - 1 ) | | u ( t ) | | C ( T - t ) - 1 / ( p - 1 ) . Also, as an application of our method, we obtain the same upper estimate if u only satisfies the nonlinear parabolic inequality u t - u x x u p . More general inequalities of the form u t - u x x f ( u ) with, for instance, f ( u ) = ( 1 + u ) l o g p ( 1 + u ) are also treated. Our results show that for solutions of the parabolic inequality, one has essentially the same estimates as for solutions of the ordinary...

Bubbling on boundary submanifolds for the Lin–Ni–Takagi problem at higher critical exponents

Manuel del Pino, Fethi Mahmudi, Monica Musso (2014)

Journal of the European Mathematical Society

Let Ω be a bounded domain in n with smooth boundary Ω . We consider the equation d 2 Δ u - u + u n - k + 2 n - k - 2 = 0 in Ω , under zero Neumann boundary conditions, where Ω is open, smooth and bounded and d is a small positive parameter. We assume that there is a k -dimensional closed, embedded minimal submanifold K of Ω , which is non-degenerate, and certain weighted average of sectional curvatures of Ω is positive along K . Then we prove the existence of a sequence d = d j 0 and a positive solution u d such that d 2 | u d | 2 S δ K as d 0 in the sense of measures, where δ K ...

Currently displaying 1 – 8 of 8

Page 1