Feedback stabilization of semilinear heat equations.
We establish the existence and stability of multidimensional transonic shocks (hyperbolic-elliptic shocks), which are not nearly orthogonal to the flow direction, for the Euler equations for steady compressible potential fluids in unbounded domains in . The Euler equations can be written as a second order nonlinear equation of mixed hyperbolic-elliptic type for the velocity potential. The transonic shock problem can be formulated into the following free boundary problem: The free boundary is the...
We consider several simple models of tumor growth, described by systems of PDEs, and describe results on existence of solutions and on their asymptotic behavior. The boundary of the tumor region is a free boundary. In §1 the model assumes three types of cells, proliferating, quiescent and necrotic, and the corresponding PDE system consists of elliptic, parabolic and hyperbolic equations. The model in §2 assumes that the tumor has only proliferating cells. Finally in §3 we consider a model for treatment...
In this article, we analyze the stability of various numerical schemes for differential models of viscoelastic fluids. More precisely, we consider the prototypical Oldroyd-B model, for which a free energy dissipation holds, and we show under which assumptions such a dissipation is also satisfied for the numerical scheme. Among the numerical schemes we analyze, we consider some discretizations based on the log-formulation of the Oldroyd-B system proposed by Fattal and Kupferman in [J. Non-Newtonian...