Eigenvalues of inequalities of reaction-diffusion type and destabilizing effect of unilateral conditions
Für die Lösungen seminlinearer parabolischer Differentialgleichungen werden Einschliessungsaussagen hergeleitet. Hierbei werden Aussagen zur Stabilität von Lösungen ermittelt. Die Resultate werden am Beispiel der Fitzhugh-Nagumo Gleichungen diskutiert.
In this proceedings article we shall survey a series of results on the stability of self-similar solutions of the vortex filament equation. This equation is a geometric flow for curves in and it is used as a model for the evolution of a vortex filament in fluid mechanics. The main theorem give, under suitable assumptions, the existence and description of solutions generated by curves with a corner, for positive and negative times. Its companion theorem describes the evolution of perturbations...
In this paper we study the boundary exact controllability for the equation when the control action is of Dirichlet-Neumann form and is a bounded domain in . The result is obtained by applying the HUM (Hilbert Uniqueness Method) due to J. L. Lions.
We consider the damped semilinear viscoelastic wave equation with nonlocal boundary dissipation. The existence of global solutions is proved by means of the Faedo-Galerkin method and the uniform decay rate of the energy is obtained by following the perturbed energy method provided that the kernel of the memory decays exponentially.
For a class of semi-abstract evolution equations for sections on vector bundles on a three-dimensional compact manifold we prove that for initial values with certain symmetries strong solutions exist for all times. In case these solutions become small after some time, strong solutions exist also for small perturbations of these initial values. Many systems from fluid mechanics are included in this class.