Random data Cauchy problem for supercritical Schrödinger equations
Reaction-diffusion systems are studied under the assumptions guaranteeing diffusion driven instability and arising of spatial patterns. A stabilizing influence of unilateral conditions given by quasivariational inequalities to this effect is described.
In this paper we explore a new model of field carcinogenesis, inspired by lung cancer precursor lesions, which includes dynamics of a spatially distributed population of pre-cancerous cells c(t, x), constantly supplied by an influx μ of mutated normal cells. Cell proliferation is controlled by growth factor molecules bound to cells, b(t, x). Free growth factor molecules g(t, x) are produced by precancerous cells and may diffuse before they become bound to other cells. The purpose of modelling is...
We report on results we recently obtained in Hebey and Thizy [11, 12] for critical stationary Kirchhoff systems in closed manifolds. Let be a closed -manifold, . The critical Kirchhoff systems we consider are written asfor all , where is the Laplace-Beltrami operator, is a -map from into the space of symmetric matrices with real entries, the ’s are the components of , , is the Euclidean norm of , is the critical Sobolev exponent, and we require that in for all . We...
We prove the existence and uniqueness of global strong solutions to the Cauchy problem for 3D incompressible MHD equations with nonlinear damping terms. Moreover, the preliminary L² decay for weak solutions is also established.
This article recalls the results given by A. Dutrifoy, A. Majda and S. Schochet in [1] in which they prove an uniform estimate of the system as well as the convergence to a global solution of the long wave equations as the Froud number tends to zero. Then, we will prove the convergence with weaker hypothesis and show that the life span of the solutions tends to infinity as the Froud number tends to zero.
We present sufficient conditions on the initial data of an undamped Klein-Gordon equation in bounded domains with homogeneous Dirichlet boundary conditions to guarantee the blow up of weak solutions. Our methodology is extended to a class of evolution equations of second order in time. As an example, we consider a generalized Boussinesq equation. Our result is based on a careful analysis of a differential inequality. We compare our results with the ones in the literature.
If a second order semilinear conservative equation with esssentially oscillatory solutions such as the wave equation is perturbed by a possibly non monotone damping term which is effective in a non negligible sub-region for at least one sign of the velocity, all solutions of the perturbed system converge weakly to 0 as time tends to infinity. We present here a simple and natural method of proof of this kind of property, implying as a consequence some recent very general results of Judith Vancostenoble....
If a second order semilinear conservative equation with esssentially oscillatory solutions such as the wave equation is perturbed by a possibly non monotone damping term which is effective in a non negligible sub-region for at least one sign of the velocity, all solutions of the perturbed system converge weakly to 0 as time tends to infinity. We present here a simple and natural method of proof of this kind of property, implying as a consequence some recent very general results of Judith Vancostenoble. ...