Über die Regularität der schwachen Lösungen von Randwertaufgaben für quasilineare elliptische Differentialgleichungen höherer Ordnung
Nous montrons principalement que, si est une fonction différentiable sur un intervalle , si sa dérivée est höldérienne d’ordre avec et si (resp. quand (resp. alors , qui est absolument continue, admet (presque partout) une dérivée bornée presque partout.
We study the Gevrey regularity down to t = 0 of solutions to the initial value problem for a semilinear heat equation . The approach is based on suitable iterative fixed point methods in based Banach spaces with anisotropic Gevrey norms with respect to the time and the space variables. We also construct explicit solutions uniformly analytic in t ≥ 0 and x ∈ ℝⁿ for some conservative nonlinear terms with symmetries.