Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux.
We assume that is a weak solution to the non-steady Navier-Stokes initial-boundary value problem that satisfies the strong energy inequality in its domain and the Prodi-Serrin integrability condition in the neighborhood of the boundary. We show the consequences for the regularity of near the boundary and the connection with the interior regularity of an associated pressure and the time derivative of .
Dirac-harmonic maps are a mathematical version (with commuting variables only) of the solutions of the field equations of the non-linear supersymmetric sigma model of quantum field theory. We explain this structure, including the appropriate boundary conditions, in a geometric framework. The main results of our paper are concerned with the analytic regularity theory of such Dirac-harmonic maps. We study Dirac-harmonic maps from a Riemannian surface to an arbitrary compact Riemannian manifold. We...
We consider non-linear elliptic equations having a measure in the right-hand side, of the type and prove differentiability and integrability results for solutions. New estimates in Marcinkiewicz spaces are also given, and the impact of the measure datum density properties on the regularity of solutions is analyzed in order to build a suitable Calderón-Zygmund theory for the problem. All the regularity results presented in this paper are provided together with explicit local a priori estimates.
The Euler-Poisson system is a fundamental two-fluid model to describe the dynamics of the plasma consisting of compressible electrons and a uniform ion background. In the 3D case Guo [7] first constructed a global smooth irrotational solution by using the dispersive Klein-Gordon effect. It has been conjectured that same results should hold in the two-dimensional case. In our recent work [13], we proved the existence of a family of smooth solutions by constructing the wave operators for the 2D system....
Extending our previous work, we show that the Cauchy problem for wave equations with critical exponential nonlinearities in 2 space dimensions is globally well-posed for arbitrary smooth initial data.
The boundary control problem for the dynamical Lame system (isotropic elasticity model) is considered. The continuity of the “input state” map in -norms is established. A structure of the reachable sets for arbitrary is studied. In general case, only the first component of the complete state may be controlled, an approximate controllability occurring in the subdomain filled with the shear (slow) waves. The controllability results are applied to the problem of the boundary data continuation....
The boundary control problem for the dynamical Lame system (isotropic elasticity model) is considered. The continuity of the “input → state" map in L2-norms is established. A structure of the reachable sets for arbitrary T>0 is studied. In general case, only the first component of the complete state may be controlled, an approximate controllability occurring in the subdomain filled with the shear (slow) waves. The controllability results are applied to the problem of the boundary data continuation....
We study the Dirichlet problems for elliptic partial differential systems with nonuniform growth. By means of the Musielak-Orlicz space theory, we obtain the existence of weak solutions, which generalizes the result of Acerbi and Fusco [1].
We study a model of interfacial crack between two bonded dissimilar linearized elastic media. The Coulomb friction law and non-penetration condition are assumed to hold on the whole crack surface. We define a weak formulation of the problem in the primal form and get the equivalent primal-dual formulation. Then we state the existence theorem of the solution. Further, by means of Goursat-Kolosov-Muskhelishvili stress functions we derive convergent expansions of the solution near the crack tip.
We consider the initial-boundary-value problem for the one-dimensional fast diffusion equation on . For monotone initial data the existence of classical solutions is known. The case of non-monotone initial data is delicate since the equation is singular at . We ‘explicitly’ construct infinitely many weak Lipschitz solutions to non-monotone initial data following an approach to the Perona-Malik equation. For this construction we rephrase the problem as a differential inclusion which enables us...
The electronic Schrödinger equation describes the motion of N electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, three spatial dimensions for each electron. Approximating them is thus inordinately challenging. As is shown in the author's monograph [Yserentant, Lecture Notes in Mathematics 2000, Springer (2010)], the regularity of the solutions, which increases with the number of electrons,...
The electronic Schrödinger equation describes the motion of N electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, three spatial dimensions for each electron. Approximating them is thus inordinately challenging. As is shown in the author's monograph [Yserentant, Lecture Notes in Mathematics2000, Springer (2010)], the regularity of the solutions, which increases with the number of electrons,...