Page 1 Next

Displaying 1 – 20 of 32

Showing per page

The boundary regularity of a weak solution of the Navier-Stokes equation and its connection to the interior regularity of pressure

Jiří Neustupa (2003)

Applications of Mathematics

We assume that 𝕧 is a weak solution to the non-steady Navier-Stokes initial-boundary value problem that satisfies the strong energy inequality in its domain and the Prodi-Serrin integrability condition in the neighborhood of the boundary. We show the consequences for the regularity of 𝕧 near the boundary and the connection with the interior regularity of an associated pressure and the time derivative of 𝕧 .

The boundary value problem for Dirac-harmonic maps

Qun Chen, Jürgen Jost, Guofang Wang, Miaomiao Zhu (2013)

Journal of the European Mathematical Society

Dirac-harmonic maps are a mathematical version (with commuting variables only) of the solutions of the field equations of the non-linear supersymmetric sigma model of quantum field theory. We explain this structure, including the appropriate boundary conditions, in a geometric framework. The main results of our paper are concerned with the analytic regularity theory of such Dirac-harmonic maps. We study Dirac-harmonic maps from a Riemannian surface to an arbitrary compact Riemannian manifold. We...

The Calderón-Zygmund theory for elliptic problems with measure data

Giuseppe Mingione (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider non-linear elliptic equations having a measure in the right-hand side, of the type div a ( x , D u ) = μ , and prove differentiability and integrability results for solutions. New estimates in Marcinkiewicz spaces are also given, and the impact of the measure datum density properties on the regularity of solutions is analyzed in order to build a suitable Calderón-Zygmund theory for the problem. All the regularity results presented in this paper are provided together with explicit local a priori estimates.

The Cauchy problem for the two dimensional Euler–Poisson system

Dong Li, Yifei Wu (2014)

Journal of the European Mathematical Society

The Euler-Poisson system is a fundamental two-fluid model to describe the dynamics of the plasma consisting of compressible electrons and a uniform ion background. In the 3D case Guo [7] first constructed a global smooth irrotational solution by using the dispersive Klein-Gordon effect. It has been conjectured that same results should hold in the two-dimensional case. In our recent work [13], we proved the existence of a family of smooth solutions by constructing the wave operators for the 2D system....

The critical nonlinear wave equation in two space dimensions

Michael Struwe (2013)

Journal of the European Mathematical Society

Extending our previous work, we show that the Cauchy problem for wave equations with critical exponential nonlinearities in 2 space dimensions is globally well-posed for arbitrary smooth initial data.

The dynamical Lame system : regularity of solutions, boundary controllability and boundary data continuation

M. I. Belishev, I. Lasiecka (2002)

ESAIM: Control, Optimisation and Calculus of Variations

The boundary control problem for the dynamical Lame system (isotropic elasticity model) is considered. The continuity of the “input state” map in L 2 -norms is established. A structure of the reachable sets for arbitrary T > 0 is studied. In general case, only the first component u ( · , T ) of the complete state { u ( · , T ) , u t ( · , T ) } may be controlled, an approximate controllability occurring in the subdomain filled with the shear (slow) waves. The controllability results are applied to the problem of the boundary data continuation....

The dynamical Lame system: regularity of solutions, boundary controllability and boundary data continuation

M. I. Belishev, I. Lasiecka (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The boundary control problem for the dynamical Lame system (isotropic elasticity model) is considered. The continuity of the “input → state" map in L2-norms is established. A structure of the reachable sets for arbitrary T>0 is studied. In general case, only the first component u ( · , T ) of the complete state { u ( · , T ) , u t ( · , T ) } may be controlled, an approximate controllability occurring in the subdomain filled with the shear (slow) waves. The controllability results are applied to the problem of the boundary data continuation....

The interface crack with Coulomb friction between two bonded dissimilar elastic media

Hiromichi Itou, Victor A. Kovtunenko, Atusi Tani (2011)

Applications of Mathematics

We study a model of interfacial crack between two bonded dissimilar linearized elastic media. The Coulomb friction law and non-penetration condition are assumed to hold on the whole crack surface. We define a weak formulation of the problem in the primal form and get the equivalent primal-dual formulation. Then we state the existence theorem of the solution. Further, by means of Goursat-Kolosov-Muskhelishvili stress functions we derive convergent expansions of the solution near the crack tip.

The microstructure of Lipschitz solutions for a one-dimensional logarithmic diffusion equation

Nicole Schadewaldt (2011)

Commentationes Mathematicae Universitatis Carolinae

We consider the initial-boundary-value problem for the one-dimensional fast diffusion equation u t = [ sign ( u x ) log | u x | ] x on Q T = [ 0 , T ] × [ 0 , l ] . For monotone initial data the existence of classical solutions is known. The case of non-monotone initial data is delicate since the equation is singular at u x = 0 . We ‘explicitly’ construct infinitely many weak Lipschitz solutions to non-monotone initial data following an approach to the Perona-Malik equation. For this construction we rephrase the problem as a differential inclusion which enables us...

The mixed regularity of electronic wave functions multiplied by explicit correlation factors

Harry Yserentant (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The electronic Schrödinger equation describes the motion of N electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, three spatial dimensions for each electron. Approximating them is thus inordinately challenging. As is shown in the author's monograph [Yserentant, Lecture Notes in Mathematics 2000, Springer (2010)], the regularity of the solutions, which increases with the number of electrons,...

The mixed regularity of electronic wave functions multiplied by explicit correlation factors***

Harry Yserentant (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

The electronic Schrödinger equation describes the motion of N electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, three spatial dimensions for each electron. Approximating them is thus inordinately challenging. As is shown in the author's monograph [Yserentant, Lecture Notes in Mathematics2000, Springer (2010)], the regularity of the solutions, which increases with the number of electrons,...

Currently displaying 1 – 20 of 32

Page 1 Next