The boundary value problem of the equations with nonnegative characteristic form.
Si prova l'esistenza di un'unica soluzione debole che dipende con continuità dai dati al contorno per il problema lineare di Molodenskii in approssimazione quasi sferica, nel caso che la superficie al contorno soddisfi una condizione di cono. Si segue un approccio costruttivo diretto, che generalizza una procedura precedentemente elaborata per il problema semplice di Molodenskii. Inoltre si prova che la soluzione ha derivate prime a quadrato integrabile al contorno, il che è essenziale per le applicazioni...
Si studiano le condizioni per 1’esistenza, l’unicità e la stabilità della soluzione debole del problema lineare di Molodenskii in approssimazione quasi-sferica, generalizzando una tecnica perturbativa usata in precedenza per la soluzione di tipo classico. La procedura seguita richiede delle condizioni di maggior regolarità per il contorno, di quelle usate nell’analisi del problema «semplice». Il risultato ottenuto è l'esistenza e unicità di una soluzione con derivate seconde a quadrato integrabile,...
We will consider the following problemwhere is a domain such that , , and . The main objective of this note is to study the precise threshold for which there is novery weak supersolutionif . The optimality of is also proved by showing the solvability of the Dirichlet problem when , for small enough and under some hypotheses that we will prescribe.
We consider the magneto-micropolar fluid flow in a bounded domain Ω ⊂ ℝ². The flow is modelled by a system of PDEs, a generalisation of the two-dimensional Navier-Stokes equations. Using the Galerkin method we prove the existence and uniqueness of weak solutions and then using the ℓ-trajectories method we prove the existence of the exponential attractor in the dynamical system associated with the model.
We consider the following Darboux problem for the functional differential equation a.e. in [0,a]×[0,b], u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b]where the function is defined by for (s,t) ∈ [-a₀,0]×[-b₀,0]. We prove a theorem on existence of the Carathéodory solutions of the above problem.
We study a model of interfacial crack between two bonded dissimilar linearized elastic media. The Coulomb friction law and non-penetration condition are assumed to hold on the whole crack surface. We define a weak formulation of the problem in the primal form and get the equivalent primal-dual formulation. Then we state the existence theorem of the solution. Further, by means of Goursat-Kolosov-Muskhelishvili stress functions we derive convergent expansions of the solution near the crack tip.
We assign a measure to an upper semicontinuous function which is subharmonic with respect to the mean curvature operator, so that it agrees with the mean curvature of its graph when the function is smooth. We prove that the measure is weakly continuous with respect to almost everywhere convergence. We also establish a sharp Harnack inequality for the minimal surface equation, which is crucial for our proof of the weak continuity. As an application we prove the existence of weak solutions to the...
We examine the regularity of weak and very weak solutions of the Poisson equation on polygonal domains with data in L². We consider mixed Dirichlet, Neumann and Robin boundary conditions. We also describe the singular part of weak and very weak solutions.
The aim of this paper is to establish the existence of at least three solutions for the nonlinear Neumann boundary-value problem involving the p(x)-Laplacian of the form in Ω, on ∂Ω. Our technical approach is based on the three critical points theorem due to Ricceri.