Page 1

Displaying 1 – 4 of 4

Showing per page

Équations de transport dont les vitesses sont partiellement B V

Nicolas Lerner (2003/2004)

Séminaire Équations aux dérivées partielles

Nous démontrons l’unicité des solutions faibles pour une classe d’équations de transport dont les vitesses sont partiellement à variations bornées. Nous nous intéressons à des champs de vecteurs du type a 1 ( x 1 ) · x 1 + a 2 ( x 1 , x 2 ) · x 2 , a 1 B V ( x 1 N 1 ) , a 2 L x 1 1 B V ( x 2 N 2 ) , avec une borne sur la divergence de chacun des champs a 1 , a 2 . Ce modèle a été étudié récemment dans [LL] par C. Le Bris et P.-L. Lions avec une régularité W 1 , 1  ; nous montrons ici également que, dans le cas W 1 , 1 , le contrôle L de la divergence totale du champ est suffisant. Notre méthode consiste à démontrer...

Existence of solutions to nonlinear advection-diffusion equation applied to Burgers' equation using Sinc methods

Kamel Al-Khaled (2014)

Applications of Mathematics

This paper has two objectives. First, we prove the existence of solutions to the general advection-diffusion equation subject to a reasonably smooth initial condition. We investigate the behavior of the solution of these problems for large values of time. Secondly, a numerical scheme using the Sinc-Galerkin method is developed to approximate the solution of a simple model of turbulence, which is a special case of the advection-diffusion equation, known as Burgers' equation. The approximate solution...

Currently displaying 1 – 4 of 4

Page 1