On a nonstationary model of a catalytic process in a fluidized bed.
Page 1
Gaevoi, V.P. (2005)
Sibirskij Matematicheskij Zhurnal
Bernard Dacorogna, Jürgen Moser (1990)
Annales de l'I.H.P. Analyse non linéaire
R.A. Nicolaides, G.J. Fix, M.D. Gunzburger (1981)
Numerische Mathematik
M. Escobedo, S. Mischler, M. Rodriguez Ricard (2005)
Annales de l'I.H.P. Analyse non linéaire
C. Bardos, Kuo Pen Yu (1983)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Simone Bertone, Arrigo Cellina (2007)
ESAIM: Control, Optimisation and Calculus of Variations
We propose a necessary and sufficient condition about the existence of variations, i.e., of non trivial solutions to the differential inclusion .
Tomasz Człapiński (1999)
Annales Polonici Mathematici
We consider the mixed problem for the quasilinear partial functional differential equation with unbounded delay , where is defined by , , and the phase space satisfies suitable axioms. Using the method of bicharacteristics and the fixed-point method we prove a theorem on the local existence and uniqueness of Carathéodory solutions of the mixed problem.
S. Bandyopadhyay, B. Dacorogna (2009)
Annales de l'I.H.P. Analyse non linéaire
Miloslav Feistauer, Jindřich Nečas (1986)
Commentationes Mathematicae Universitatis Carolinae
Krzysztof Topolski (1994)
Annales Polonici Mathematici
We consider viscosity solutions for first order differential-functional equations. Uniqueness theorems for initial, mixed, and boundary value problems are presented. Our theorems include some results for generalized ("almost everywhere") solutions.
Page 1