Previous Page 2

Displaying 21 – 38 of 38

Showing per page

Homogeneous Carnot groups related to sets of vector fields

Andrea Bonfiglioli (2004)

Bollettino dell'Unione Matematica Italiana

In this paper, we are concerned with the following problem: given a set of smooth vector fields X 1 , , X m on R N , we ask whether there exists a homogeneous Carnot group G = ( R N , , δ λ ) such that i X i 2 is a sub-Laplacian on G . We find necessary and sufficient conditions on the given vector fields in order to give a positive answer to the question. Moreover, we explicitly construct the group law i as above, providing direct proofs. Our main tool is a suitable version of the Campbell-Hausdorff formula. Finally, we exhibit several...

Homogenization of Hamilton-Jacobi equations in Carnot Groups

Bianca Stroffolini (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We study an homogenization problem for Hamilton-Jacobi equations in the geometry of Carnot Groups. The tiling and the corresponding notion of periodicity are compatible with the dilatations of the Group and use the Lie bracket generating property.

Hörmander systems and harmonic morphisms

Elisabetta Barletta (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Given a Hörmander system X = { X 1 , , X m } on a domain Ω 𝐑 n we show that any subelliptic harmonic morphism φ from Ω into a ν -dimensional riemannian manifold N is a (smooth) subelliptic harmonic map (in the sense of J. Jost & C-J. Xu, [9]). Also φ is a submersion provided that ν m and X has rank m . If Ω = 𝐇 n (the Heisenberg group) and X = 1 2 L α + L α ¯ , 1 2 i L α - L α ¯ , where L α ¯ = / z ¯ α - i z α / t is the Lewy operator, then a smooth map φ : Ω N is a subelliptic harmonic morphism if and only if φ π : ( C ( 𝐇 n ) , F θ 0 ) N is a harmonic morphism, where S 1 C ( 𝐇 n ) π 𝐇 n is the canonical circle bundle and F θ 0 is the Fefferman...

Hypoelliptic estimates for some linear diffusive kinetic equations

Frédéric Hérau (2010)

Journées Équations aux dérivées partielles

This note is an announcement of a forthcoming paper [13] in collaboration with K. Pravda-Starov on global hypoelliptic estimates for Fokker-Planck and linear Landau-type operators. Linear Landau-type equations are a class of inhomogeneous kinetic equations with anisotropic diffusion whose study is motivated by the linearization of the Landau equation near the Maxwellian distribution. By introducing a microlocal method by multiplier which can be adapted to various hypoelliptic kinetic equations,...

Laurent series expansion for solutions of hypoelliptic equations

M. Langenbruch (2002)

Annales Polonici Mathematici

We prove that any zero solution of a hypoelliptic partial differential operator can be expanded in a generalized Laurent series near a point singularity if and only if the operator is semielliptic. Moreover, the coefficients may be calculated by means of a Cauchy integral type formula. In particular, we obtain explicit expansions for the solutions of the heat equation near a point singularity. To prove the necessity of semiellipticity, we additionally assume that the index of hypoellipticity with...

On the second order derivatives of convex functions on the Heisenberg group

Cristian E. Gutiérrez, Annamaria Montanari (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In the euclidean setting the celebrated Aleksandrov-Busemann-Feller theorem states that convex functions are a.e. twice differentiable. In this paper we prove that a similar result holds in the Heisenberg group, by showing that every continuous –convex function belongs to the class of functions whose second order horizontal distributional derivatives are Radon measures. Together with a recent result by Ambrosio and Magnani, this proves the existence a.e. of second order horizontal derivatives for...

Solvability of invariant sublaplacians on spheres and group contractions

Fulvio Ricci, Jérémie Unterberger (2001)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In the first part of this paper we study the local and global solvability and the hypoellipticity of a family of left-invariant sublaplacians L α on the spheres S 2 n + 1 U n + 1 / U n . In the second part, we introduce a larger family of left-invariant sublaplacians L α , β on S 3 S U 2 and study the corresponding properties by means of a Lie group contraction to the Heisenberg group.

Square roots of perturbed subelliptic operators on Lie groups

Lashi Bandara, A. F. M. ter Elst, Alan McIntosh (2013)

Studia Mathematica

We solve the Kato square root problem for bounded measurable perturbations of subelliptic operators on connected Lie groups. The subelliptic operators are divergence form operators with complex bounded coefficients, which may have lower order terms. In this general setting we deduce inhomogeneous estimates. In case the group is nilpotent and the subelliptic operator is pure second order, we prove stronger homogeneous estimates. Furthermore, we prove Lipschitz stability of the estimates under small...

Subelliptic Poincaré inequalities: the case p < 1.

Stephen M. Buckley, Pekka Koskela, Guozhen Lu (1995)

Publicacions Matemàtiques

We obtain (weighted) Poincaré type inequalities for vector fields satisfying the Hörmander condition for p < 1 under some assumptions on the subelliptic gradient of the function. Such inequalities hold on Boman domains associated with the underlying Carnot- Carathéodory metric. In particular, they remain true for solutions to certain classes of subelliptic equations. Our results complement the earlier results in these directions for p ≥ 1.

Subharmonic functions in sub-Riemannian settings

Andrea Bonfiglioli, Ermanno Lanconelli (2013)

Journal of the European Mathematical Society

In this paper we furnish mean value characterizations for subharmonic functions related to linear second order partial differential operators with nonnegative characteristic form, possessing a well-behaved fundamental solution Γ . These characterizations are based on suitable average operators on the level sets of Γ . Asymptotic characterizations are also considered, extending classical results of Blaschke, Privaloff, Radó, Beckenbach, Reade and Saks. We analyze as well the notion of subharmonic function...

[unknown]

Erika Battaglia, Stefano Biagi, Andrea Bonfiglioli (0)

Annales de l’institut Fourier

Currently displaying 21 – 38 of 38

Previous Page 2