Displaying 41 – 60 of 187

Showing per page

Error estimates for Stokes problem with Tresca friction conditions

Mekki Ayadi, Leonardo Baffico, Mohamed Khaled Gdoura, Taoufik Sassi (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we present and study a mixed variational method in order to approximate, with the finite element method, a Stokes problem with Tresca friction boundary conditions. These non-linear boundary conditions arise in the modeling of mold filling process by polymer melt, which can slip on a solid wall. The mixed formulation is based on a dualization of the non-differentiable term which define the slip conditions. Existence and uniqueness of both continuous and discrete solutions of these...

Free boundary problems and transonic shocks for the Euler equations in unbounded domains

Gui-Qiang Chen, Mikhail Feldman (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We establish the existence and stability of multidimensional transonic shocks (hyperbolic-elliptic shocks), which are not nearly orthogonal to the flow direction, for the Euler equations for steady compressible potential fluids in unbounded domains in n , n 3 . The Euler equations can be written as a second order nonlinear equation of mixed hyperbolic-elliptic type for the velocity potential. The transonic shock problem can be formulated into the following free boundary problem: The free boundary is the...

Free Boundary Problems Associated with Multiscale Tumor Models

A. Friedman (2009)

Mathematical Modelling of Natural Phenomena

The present paper introduces a tumor model with two time scales, the time t during which the tumor grows and the cycle time of individual cells. The model also includes the effects of gene mutations on the population density of the tumor cells. The model is formulated as a free boundary problem for a coupled system of elliptic, parabolic and hyperbolic equations within the tumor region, with nonlinear and nonlocal terms. Existence and uniqueness theorems are proved, and properties of the free boundary...

Global Existence and Boundedness of Solutions to a Model of Chemotaxis

J. Dyson, R. Villella-Bressan, G. F. Webb (2008)

Mathematical Modelling of Natural Phenomena

A model of chemotaxis is analyzed that prevents blow-up of solutions. The model consists of a system of nonlinear partial differential equations for the spatial population density of a species and the spatial concentration of a chemoattractant in n-dimensional space. We prove the existence of solutions, which exist globally, and are L∞-bounded on finite time intervals. The hypotheses require nonlocal conditions on the species-induced production of the chemoattractant.

Initial boundary value problem for generalized Zakharov equations

Shujun You, Boling Guo, Xiaoqi Ning (2012)

Applications of Mathematics

This paper considers the existence and uniqueness of the solution to the initial boundary value problem for a class of generalized Zakharov equations in ( 2 + 1 ) dimensions, and proves the global existence of the solution to the problem by a priori integral estimates and the Galerkin method.

Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition

Dana Říhová-Škabrahová (2001)

Applications of Mathematics

The computation of nonlinear quasistationary two-dimensional magnetic fields leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such a problem with a nonhomogeneous Dirichlet boundary condition on a part Γ 1 of the boundary is studied in this paper. The problem is discretized in space by the finite element method with linear functions on triangular elements and in time by the implicit-explicit method (the left-hand side by the implicit Euler method and the right-hand...

Currently displaying 41 – 60 of 187