Spectral decomposition of Green’s integrals and existence of -solutions of matrix factorizations of the Laplace operator in a ball
This text deals with inverse spectral theory in a semiclassical setting. Given a quantum system, the haunting question is “What interesting quantities can be discovered on the spectrum that can help to characterize the system ?” The general framework will be semiclassical analysis, and the issue is to recover the classical dynamics from the quantum spectrum. The coupling of a spin and an oscillator is a fundamental example in physics where some nontrivial explicit calculations can be done.
To every elliptic SG pseudo-differential operator with positive orders, we associate the minimal and maximal operators on , 1 < p < ∞, and prove that they are equal. The domain of the minimal ( = maximal) operator is explicitly computed in terms of a Sobolev space. We prove that an elliptic SG pseudo-differential operator is Fredholm. The essential spectra of elliptic SG pseudo-differential operators with positive orders and bounded SG pseudo-differential operators with orders 0,0 are computed....
Nello studio dei problemi del tipo , si impongono generalmente delle condizione sul comportamento asintotico di rispetto allo spettro di . Avendo in vista dei problemi quasilineari del tipo , sembra naturale introdurre una nozione di spettro per che tenga conto della dipendenza del membro di destra rispetto al gradiende . L'oggetto di questo lavoro è di definire, studiare e applicare questa nuova nozione di spettro.
Dans cet article, nous donnons une description des spectres du laplacien dans certains domaines sphériques. Les représentations des groupes de Coxeter cristallographiques y jouent un rôle fondamental.
We investigate the spectral properties of the differential operator , with the Dirichlet boundary condition in unbounded domains whose boundaries satisfy some geometrical condition. Considering this operator as a self-adjoint operator in the space with the norm , we study the structure of the spectrum with respect to the parameter . Further we give an estimate of the rate of condensation of discrete spectra when it changes to continuous.