Previous Page 4

Displaying 61 – 65 of 65

Showing per page

Cramér's formula for Heisenberg manifolds

Mahta Khosravi, John A. Toth (2005)

Annales de l'institut Fourier

Let R ( λ ) be the error term in Weyl’s law for a 3-dimensional Riemannian Heisenberg manifold. We prove that 1 T | R ( t ) | 2 d t = c T 5 2 + O δ ( T 9 4 + δ ) , where c is a specific nonzero constant and δ is an arbitrary small positive number. This is consistent with the conjecture of Petridis and Toth stating that R ( t ) = O δ ( t 3 4 + δ ) .The idea of the proof is to use the Poisson summation formula to write the error term in a form which can be estimated by the method of the stationary phase. The similar result will be also proven in the 2 n + 1 -dimensional case.

Curved thin domains and parabolic equations

M. Prizzi, M. Rinaldi, K. P. Rybakowski (2002)

Studia Mathematica

Consider the family uₜ = Δu + G(u), t > 0, x Ω ε , ν ε u = 0 , t > 0, x Ω ε , ( E ε ) of semilinear Neumann boundary value problems, where, for ε > 0 small, the set Ω ε is a thin domain in l , possibly with holes, which collapses, as ε → 0⁺, onto a (curved) k-dimensional submanifold of l . If G is dissipative, then equation ( E ε ) has a global attractor ε . We identify a “limit” equation for the family ( E ε ) , prove convergence of trajectories and establish an upper semicontinuity result for the family ε as ε → 0⁺.

Currently displaying 61 – 65 of 65

Previous Page 4