New bounds for the principal Dirichlet eigenvalue of planar regions.
The paper deals with error estimates and lower bound approximations of the Steklov eigenvalue problems on convex or concave domains by nonconforming finite element methods. We consider four types of nonconforming finite elements: Crouzeix-Raviart, , and enriched Crouzeix-Raviart. We first derive error estimates for the nonconforming finite element approximations of the Steklov eigenvalue problem and then give the analysis of lower bound approximations. Some numerical results are presented to...
We obtain a non-existence result for a class of quasi-linear eigenvalue problems when a parameter is small. By using Pohozaev identity and some comparison arguments, non-existence theorems are established for quasi-linear eigenvalue problems under supercritical growth condition.