The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Classically, Hardy’s inequality enables to estimate the spectral gap of a one-dimensional diffusion up to a factor belonging to . The goal of this paper is to better understand the latter factor, at least in a symmetric setting. In particular, we will give an asymptotical criterion implying that its value is exactly 4. The underlying argument is based on a semi-explicit functional for the spectral gap, which is monotone in some rearrangement of the data. To find it will resort to some regularity...
We present here a simplified version of recent results obtained with B. Helffer and M. Klein. They are concerned with the exponentally small eigenvalues of the Witten Laplacian on -forms. We show how the Witten complex structure is better taken into account by working with singular values. This provides a convenient framework to derive accurate approximations of the first eigenvalues of and solves efficiently the question of weakly resonant wells.
We estimate the spreading of the solution of the Schrödinger equation asymptotically in time, in term of the fractal properties of the associated spectral measures. For this, we exhibit a lower bound for the moments of order at time for the state defined by . We show that this lower bound can be expressed in term of the generalized Rényi dimension of the spectral measure associated to the hamiltonian and the state . We especially concentrate on continuous models.
We study the dispersion relations and spectra of invariant Schrödinger operators on a graphyne structure (lithographite). In particular, description of different parts of the spectrum, band-gap structure, and Dirac points are provided.
For fixed magnetic quantum number m results on spectral properties and scattering theory are given for the three-dimensional Schrödinger operator with a constant magnetic field and an axisymmetrical electric potential V. In various, mostly singular settings, asymptotic expansions for the resolvent of the Hamiltonian H m+Hom+V are deduced as the spectral parameter tends to the lowest Landau threshold. Furthermore, scattering theory for the pair (H m, H om) is established and asymptotic expansions...
In these notes, we will describe recent work on globally solving quasilinear wave equations in the presence of trapped rays, on Kerr-de Sitter space, and obtaining the asymptotic behavior of solutions. For the associated linear problem without trapping, one would consider a global, non-elliptic, Fredholm framework; in the presence of trapping the same framework is available for spaces of growing functions only. In order to solve the quasilinear problem we thus combine these frameworks with the normally...
Currently displaying 1 –
14 of
14