Some mathematical problems in inverse potential scattering
We present some new problems in spectral optimization. The first one consists in determining the best domain for the Dirichlet energy (or for the first eigenvalue) of the metric Laplacian, and we consider in particular Riemannian or Finsler manifolds, Carnot-Carathéodory spaces, Gaussian spaces. The second one deals with the optimal shape of a graph when the minimization cost is of spectral type. The third one is the optimization problem for a Schrödinger potential in suitable classes.
In this work two non-local problems for the parabolic-hyperbolic type equation with non-characteristic line of changing type are considered. Unique solvability of these problems is proven. The uniqueness of the solution is proven by the method of energy integrals and the existence is proven by the method of integral equations.
In the first part of the paper we study some properties of eigenelements of linear selfadjoint pencils Lu = λBu. In the second part we apply these results to the investigation of some boundary value problems for mixed type second order operator-differential equations.
In questo lavoro studiamo il resto relativo della formula asintotica per gli autovalori di un operatore differenziale in , ottenuta mediante il metodo delle proiezioni spettrali approssimate ([3], Theorem 6.2). In un primo tempo diamo un controesempio di un operatore di Schrödinger con potenziale a crescita algebrica, per il quale il resto non è limitato. Quindi specifichiamo alcune condizioni addizionali da imporre all'operatore in modo da avere un resto infinitesimo.