Displaying 101 – 120 of 231

Showing per page

Implicit difference methods for nonlinear first order partial functional differential systems

Elżbieta Puźniakowska-Gałuch (2010)

Applicationes Mathematicae

Initial problems for nonlinear hyperbolic functional differential systems are considered. Classical solutions are approximated by solutions of suitable quasilinear systems of difference functional equations. The numerical methods used are difference schemes which are implicit with respect to the time variable. Theorems on convergence of difference schemes and error estimates of approximate solutions are presented. The proof of the stability is based on a comparison technique with nonlinear estimates...

Implicit difference methods for quasilinear parabolic functional differential problems of the Dirichlet type

K. Kropielnicka (2008)

Applicationes Mathematicae

Classical solutions of quasilinear functional differential equations are approximated with solutions of implicit difference schemes. Proofs of convergence of the difference methods are based on a comparison technique. Nonlinear estimates of the Perron type with respect to the functional variable for given functions are used. Numerical examples are given.

Implicit difference schemes for mixed problems related to parabolic functional differential equations

Milena Netka (2011)

Annales Polonici Mathematici

Solutions of initial boundary value problems for parabolic functional differential equations are approximated by solutions of implicit difference schemes. The existence and uniqueness of approximate solutions is proved. The proof of the stability is based on a comparison technique with nonlinear estimates of the Perron type for given operators. It is shown that the new methods are considerably better than the explicit difference schemes. Numerical examples are presented.

Impulsive Partial Hyperbolic Functional Differential Equations of Fractional Order with State-Dependent Delay

Abbas, Saïd, Benchohra, Mouffak (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 34A37, 34K37, 34K40, 35R11This paper deals with the existence and uniqueness of solutions of two classes of partial impulsive hyperbolic differential equations with fixed time impulses and state-dependent delay involving the Caputo fractional derivative. Our results are obtained upon suitable fixed point theorems.

Inertial manifolds for retarded second order in time evolution equations in admissible spaces

Cung The Anh, Le Van Hieu (2013)

Annales Polonici Mathematici

Using the Lyapunov-Perron method, we prove the existence of an inertial manifold for the process associated to a class of non-autonomous semilinear hyperbolic equations with finite delay, where the linear principal part is positive definite with a discrete spectrum having a sufficiently large distance between some two successive spectral points, and the Lipschitz coefficient of the nonlinear term may depend on time and belongs to some admissible function spaces.

Infinite systems of first order PFDEs with mixed conditions

W. Czernous (2008)

Annales Polonici Mathematici

We consider mixed problems for infinite systems of first order partial functional differential equations. An infinite number of deviating functions is permitted, and the delay of an argument may also depend on the spatial variable. A theorem on the existence of a solution and its continuous dependence upon initial boundary data is proved. The method of successive approximations is used in the existence proof. Infinite differential systems with deviated arguments and differential integral systems...

Investigations of retarded PDEs of second order in time using the method of inertial manifolds with delay

Alexander V. Rezounenko (2004)

Annales de l’institut Fourier

Inertial manifold with delay (IMD) for dissipative systems of second order in time is constructed. This result is applied to the study of different asymptotic properties of solutions. Using IMD, we construct approximate inertial manifolds containing all the stationary solutions and give a new characterization of the K-invariant manifold.

Iterated oscillation criteria for delay partial difference equations

Başak Karpuz, Özkan Öcalan (2014)

Mathematica Bohemica

In this paper, by using an iterative scheme, we advance the main oscillation result of Zhang and Liu (1997). We not only extend this important result but also drop a superfluous condition even in the noniterated case. Moreover, we present some illustrative examples for which the previous results cannot deliver answers for the oscillation of solutions but with our new efficient test, we can give affirmative answers for the oscillatory behaviour of solutions. For a visual explanation of the examples,...

Iterative methods for parabolic functional differential equations

Milena Matusik (2013)

Applicationes Mathematicae

This paper is concerned with iterative methods for parabolic functional differential equations with initial boundary conditions. Monotone iterative methods are discussed. We prove a theorem on the existence of solutions for a parabolic problem whose right-hand side admits a Jordan type decomposition with respect to the function variable. It is shown that there exist Newton sequences which converge to the solution of the initial problem. Differential equations with deviated variables and differential...

Currently displaying 101 – 120 of 231