-estimates for SPDE with discontinuous coefficients in domains.
Sample path large deviations for the laws of the solutions of stochastic nonlinear Schrödinger equations when the noise converges to zero are presented. The noise is a complex additive gaussian noise. It is white in time and colored in space. The solutions may be global or blow-up in finite time, the two cases are distinguished. The results are stated in trajectory spaces endowed with topologies analogue to projective limit topologies. In this setting, the support of the law of the solution is also...
Sample path large deviations for the laws of the solutions of stochastic nonlinear Schrödinger equations when the noise converges to zero are presented. The noise is a complex additive Gaussian noise. It is white in time and colored in space. The solutions may be global or blow-up in finite time, the two cases are distinguished. The results are stated in trajectory spaces endowed with topologies analogue to projective limit topologies. In this setting, the support of the law of the solution is...
In this talk, we describe some recent results on the Lifshitz behavior of the density of states for non monotonous random models. Non monotonous means that the random operator is not a monotonous function of the random variables. The models we consider will mainly be of alloy type but in some cases we also can apply our methods to random displacement models.
Dans , nous démontrons un résultat de localisation exponentielle pour un opérateur de Schrödinger semi-classique à potentiel périodique perturbé par de petites perturbations aléatoires indépendantes identiquement distribuées placées au fond de chaque puits. Pour ce faire, on montre que notre opérateur, restreint à un intervalle d’énergie convenable, est unitairement équivalent à une matrice aléatoire infinie dont on contrôle bien les coefficients. Puis, pour ce type de matrices, on prouve un résultat...