Page 1

Displaying 1 – 19 of 19

Showing per page

Elliptic equations of higher stochastic order

Sergey V. Lototsky, Boris L. Rozovskii, Xiaoliang Wan (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper discusses analytical and numerical issues related to elliptic equations with random coefficients which are generally nonlinear functions of white noise. Singularity issues are avoided by using the Itô-Skorohod calculus to interpret the interactions between the coefficients and the solution. The solution is constructed by means of the Wiener Chaos (Cameron-Martin) expansions. The existence and uniqueness of the solutions are established under rather weak assumptions, the main of which...

Ergodic behaviour of stochastic parabolic equations

Jan Seidler (1997)

Czechoslovak Mathematical Journal

The ergodic behaviour of homogeneous strong Feller irreducible Markov processes in Banach spaces is studied; in particular, existence and uniqueness of finite and σ -finite invariant measures are considered. The results obtained are applied to solutions of stochastic parabolic equations.

Essential m-dissipativity of Kolmogorov operators corresponding to periodic 2 D -Navier Stokes equations

Viorel Barbu, Giuseppe Da Prato, Arnaud Debussche (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove the essential m-dissipativity of the Kolmogorov operator associated with the stochastic Navier-Stokes flow with periodic boundary conditions in a space L 2 H , ν where ν is an invariant measure

Euler schemes and half-space approximation for the simulation of diffusion in a domain

Emmanuel Gobet (2001)

ESAIM: Probability and Statistics

This paper is concerned with the problem of simulation of ( X t ) 0 t T , the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain D : namely, we consider the case where the boundary D is killing, or where it is instantaneously reflecting in an oblique direction. Given N discretization times equally spaced on the interval [ 0 , T ] , we propose new discretization schemes: they are fully implementable and provide a weak error of order N - 1 under some conditions. The construction...

Euler schemes and half-space approximation for the simulation of diffusion in a domain

Emmanuel Gobet (2010)

ESAIM: Probability and Statistics

This paper is concerned with the problem of simulation of (Xt)0≤t≤T, the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain D: namely, we consider the case where the boundary ∂D is killing, or where it is instantaneously reflecting in an oblique direction. Given N discretization times equally spaced on the interval [0,T], we propose new discretization schemes: they are fully implementable and provide a weak error of order N-1 under some conditions....

Exponential convergence to the stationary measure and hyperbolicity of the minimisers for random Lagrangian Systems

Boritchev, Alexandre (2017)

Proceedings of Equadiff 14

We consider a class of 1d Lagrangian systems with random forcing in the spaceperiodic setting: φ t + φ x 2 / 2 = F ω , x S 1 = / . These systems have been studied since the 1990s by Khanin, Sinai and their collaborators [7, 9, 11, 12, 15]. Here we give an overview of their results and then we expose our recent proof of the exponential convergence to the stationary measure [6]. This is the first such result in a classical setting, i.e. in the dual-Lipschitz metric with respect to the Lebesgue space L p for finite p , partially answering...

Currently displaying 1 – 19 of 19

Page 1