Existence results for first order impulsive semilinear evolution inclusions.
We present two existence results for the Dirichlet elliptic inclusion with an upper semicontinuous multivalued right-hand side in exponential-type Orlicz spaces involving a vector Laplacian, subject to Dirichlet boundary conditions on a domain Ω⊂ ℝ². The first result is obtained via the multivalued version of the Leray-Schauder principle together with the Nakano-Dieudonné sequential weak compactness criterion. The second result is obtained by using the nonsmooth variational technique together with...
We study the initial-value problem for parabolic equations with time dependent coefficients and with nonlinear and nonlocal right-hand sides. Nonlocal terms appear in the unknown function and its gradient. We analyze convergence of explicit finite difference schemes by means of discrete fundamental solutions.
We consider a class of 1d Lagrangian systems with random forcing in the spaceperiodic setting: These systems have been studied since the 1990s by Khanin, Sinai and their collaborators [7, 9, 11, 12, 15]. Here we give an overview of their results and then we expose our recent proof of the exponential convergence to the stationary measure [6]. This is the first such result in a classical setting, i.e. in the dual-Lipschitz metric with respect to the Lebesgue space for finite , partially answering...