LP and Lipschitz Estimates for the ... Equation and the ...-Neumann Problem.
In this note we are going to address the question of when a second order differential operator is controlled by a subelliptic second order differential operator.
Given a hypoelliptic boundary value problem on with an open set in , , we show by matrix triangulation how to reduce it to two uncoupled first order systems, and how to estimate the eigenvalues of the corresponding matrices. Parametrices for the first order systems are constructed. We then characterize hypoellipticity up to the boundary in terms of the Calderon operator corresponding to the boundary value problem.
On étudie une classe de microdistributions intégrales de Fourier représentées à l’aide de phases homogènes analytiques réelles, d’amplitudes qui sont des réalisations holomorphes tronquées de symboles analytiques classiques, et de contours d’intégration le long desquels la partie imaginaire de la phase a une propriété convenable de positivité. On donne des théorèmes de changement de phase et de composition transverse analogues à ceux du cas , et on montre comment le calcul symbolique standard des...
This work is devoted to a systematic study of the microlocal regularity properties of pseudo-differential operators with the transmission property. We introduce a “boundary singular spectrum”, denoted for distributions , regular in the normal variable (thus, means that near the boundary), and it is shown that is a subset of if has degree and the transmission property. We finally prove that these results can bef used to examinate the (microlocal) regularity of the solutions of differential...
We prove that for symbols in the modulation spaces , p ≥ q, the associated multilinear pseudodifferential operators are bounded on products of appropriate modulation spaces. In particular, the symbols we study here are defined without any reference to smoothness, but rather in terms of their time-frequency behavior.
We obtain sufficient conditions for nonexistence of nontrivial solutions for some classes of nonlinear partial differential inequalities containing the fractional powers of the Laplace operator.