Propagation des singularités Gevrey pour des opérateurs hyperboliques
Nous construisons un calcul paradifférentiel adapté à l'équation de Schrödinger qui nous permet de montrer un théorème de propagation des singularités pour l'équation de Schrödinger non linéaire en adaptant la méthode de Bony. Nous construisons également la version tangentielle du calcul précédent qui nous permet de montrer un théorème de réflexion transverse des singularités pour l'équation de Schrödinger non linéaire. Nous utilisons alors ce théorème pour calculer l'opérateur...
In these lecture notes we describe the propagation of singularities of tempered distributional solutions of , where is a many-body hamiltonian , , , and is not a threshold of , under the assumption that the inter-particle (e.g. two-body) interactions are real-valued polyhomogeneous symbols of order (e.g. Coulomb-type with the singularity at the origin removed). Here the term “singularity” provides a microlocal description of the lack of decay at infinity. Our result is then that the...
One way to represent the generator of a Markov process is given by pseudo differential operators. Above all this is due to the fact that the generator satisfies the so-called positive maximum principle (...).
2000 Mathematics Subject Classification: 35S05.This work is the continuation of two earlier ones by the author and stimulated by many more recent contributions. We develop a very general calculus of pseudodifferential operators with microlocally defined normed symbol spaces. The goal was to attain the natural degree of generality in the case when the underlying metric on the cotangent space is constant. We also give sufficient conditions for our operators to belong to Schatten–von Neumann classes....
We introduce pseudodifferential operators (of infinite order) in the framework of non-quasianalytic classes of Beurling type. We prove that such an operator with (distributional) kernel in a given Beurling class is pseudo-local and can be locally decomposed, modulo a smoothing operator, as the composition of a pseudodifferential operator of finite order and an ultradifferential operator with constant coefficients in the sense of Komatsu, both operators with kernel in the same class . We also...