Displaying 41 – 60 of 69

Showing per page

Propagation et réflexion des singularités pour l'équation de Schrödinger non linéaire

Jérémie Szeftel (2005)

Annales de l’institut Fourier

Nous construisons un calcul paradifférentiel adapté à l'équation de Schrödinger qui nous permet de montrer un théorème de propagation des singularités pour l'équation de Schrödinger non linéaire en adaptant la méthode de Bony. Nous construisons également la version tangentielle du calcul précédent qui nous permet de montrer un théorème de réflexion transverse des singularités pour l'équation de Schrödinger non linéaire. Nous utilisons alors ce théorème pour calculer l'opérateur...

Propagation of singularities in many-body scattering in the presence of bound states

András Vasy (1999)

Journées équations aux dérivées partielles

In these lecture notes we describe the propagation of singularities of tempered distributional solutions u 𝒮 ' of ( H - λ ) u = 0 , where H is a many-body hamiltonian H = Δ + V , Δ 0 , V = a V a , and λ is not a threshold of H , under the assumption that the inter-particle (e.g. two-body) interactions V a are real-valued polyhomogeneous symbols of order - 1 (e.g. Coulomb-type with the singularity at the origin removed). Here the term “singularity” provides a microlocal description of the lack of decay at infinity. Our result is then that the...

Pseudodifferential Operators and Weighted Normed Symbol Spaces

Sjöstrand, J. (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 35S05.This work is the continuation of two earlier ones by the author and stimulated by many more recent contributions. We develop a very general calculus of pseudodifferential operators with microlocally defined normed symbol spaces. The goal was to attain the natural degree of generality in the case when the underlying metric on the cotangent space is constant. We also give sufficient conditions for our operators to belong to Schatten–von Neumann classes....

Pseudodifferential operators on non-quasianalytic classes of Beurling type

C. Fernández, A. Galbis, D. Jornet (2005)

Studia Mathematica

We introduce pseudodifferential operators (of infinite order) in the framework of non-quasianalytic classes of Beurling type. We prove that such an operator with (distributional) kernel in a given Beurling class ( ω ) ' is pseudo-local and can be locally decomposed, modulo a smoothing operator, as the composition of a pseudodifferential operator of finite order and an ultradifferential operator with constant coefficients in the sense of Komatsu, both operators with kernel in the same class ( ω ) ' . We also...

Currently displaying 41 – 60 of 69