Displaying 41 – 60 of 66

Showing per page

Strichartz estimates for water waves

Thomas Alazard, Nicolas Burq, Claude Zuily (2011)

Annales scientifiques de l'École Normale Supérieure

In this paper we investigate the dispersive properties of the solutions of the two dimensional water-waves system with surface tension. First we prove Strichartz type estimates with loss of derivatives at the same low level of regularity we were able to construct the solutions in [3]. On the other hand, for smoother initial data, we prove that the solutions enjoy the optimal Strichartz estimates (i.e, without loss of regularity compared to the system linearized at ( η = 0 , ψ = 0 )).

Subalgebras to a Wiener type algebra of pseudo-differential operators

Joachim Toft (2001)

Annales de l’institut Fourier

We study general continuity properties for an increasing family of Banach spaces S w p of classes for pseudo-differential symbols, where S w = S w was introduced by J. Sjöstrand in 1993. We prove that the operators in Op ( S w p ) are Schatten-von Neumann operators of order p on L 2 . We prove also that Op ( S w p ) Op ( S w r ) Op ( S w r ) and S w p · S w q S w r , provided 1 / p + 1 / q = 1 / r . If instead 1 / p + 1 / q = 1 + 1 / r , then S w p w * S w q S w r . By modifying the definition of the S w p -spaces, one also obtains symbol classes related to the S ( m , g ) spaces.

Symbol calculus on the affine group "ax + b"

Qihong Fan (1995)

Studia Mathematica

The symbol calculus on the upper half plane is studied from the viewpoint of the Kirillov theory of orbits. The main result is the L p -estimates for Fuchs type pseudodifferential operators.

Currently displaying 41 – 60 of 66