Displaying 121 – 140 of 491

Showing per page

On implicit Lagrangian differential systems

S. Janeczko (2000)

Annales Polonici Mathematici

Let (P,ω) be a symplectic manifold. We find an integrability condition for an implicit differential system D' which is formed by a Lagrangian submanifold in the canonical symplectic tangent bundle (TP,ὡ).

On inertial manifolds for reaction-diffusion equations on genuinely high-dimensional thin domains

M. Prizzi, K. P. Rybakowski (2003)

Studia Mathematica

We study a family of semilinear reaction-diffusion equations on spatial domains Ω ε , ε > 0, in l lying close to a k-dimensional submanifold ℳ of l . As ε → 0⁺, the domains collapse onto (a subset of) ℳ. As proved in [15], the above family has a limit equation, which is an abstract semilinear parabolic equation defined on a certain limit phase space denoted by H ¹ s ( Ω ) . The definition of H ¹ s ( Ω ) , given in the above paper, is very abstract. One of the objectives of this paper is to give more manageable characterizations...

On inhomogeneous self-similar measures and their L q spectra

Przemysław Liszka (2013)

Annales Polonici Mathematici

Let S i : d d for i = 1,..., N be contracting similarities, let ( p , . . . , p N , p ) be a probability vector and let ν be a probability measure on d with compact support. It is well known that there exists a unique inhomogeneous self-similar probability measure μ on d such that μ = i = 1 N p i μ S i - 1 + p ν . We give satisfactory estimates for the lower and upper bounds of the L q spectra of inhomogeneous self-similar measures. The case in which there are a countable number of contracting similarities and probabilities is considered. In particular, we...

On invariant measures for the tend map.

Francesc Bofill (1988)

Stochastica

The bifurcation structure of a one parameter dependent piecewise linear population model is described. An explicit formula is given for the density of the unique invariant absolutely continuous probability measure mub for each parameter value b. The continuity of the map b --> mub is established.

On iterates of strong Feller operators on ordered phase spaces

Wojciech Bartoszek (2004)

Colloquium Mathematicae

Let (X,d) be a metric space where all closed balls are compact, with a fixed σ-finite Borel measure μ. Assume further that X is endowed with a linear order ⪯. Given a Markov (regular) operator P: L¹(μ) → L¹(μ) we discuss the asymptotic behaviour of the iterates Pⁿ. The paper deals with operators P which are Feller and such that the μ-absolutely continuous parts of the transition probabilities P ( x , · ) x X are continuous with respect to x. Under some concentration assumptions on the asymptotic transition probabilities...

On Kurzweil's 0-1 law in inhomogeneous Diophantine approximation

Michael Fuchs, Dong Han Kim (2016)

Acta Arithmetica

We give a necessary and sufficient condition such that, for almost all s ∈ ℝ, ||nθ - s|| < ψ(n) for infinitely many n ∈ ℕ, where θ is fixed and ψ(n) is a positive, non-increasing sequence. This can be seen as a dual result to classical theorems of Khintchine and Szüsz which dealt with the situation where s is fixed and θ is random. Moreover, our result contains several earlier ones as special cases: two old theorems of Kurzweil, a theorem of Tseng and a recent...

On limit cycles of piecewise differential systems formed by arbitrary linear systems and a class of quadratic systems

Aziza Berbache (2023)

Mathematica Bohemica

We study the continuous and discontinuous planar piecewise differential systems separated by a straight line and formed by an arbitrary linear system and a class of quadratic center. We show that when these piecewise differential systems are continuous, they can have at most one limit cycle. However, when the piecewise differential systems are discontinuous, we show that they can have at most two limit cycles, and that there exist such systems with two limit cycles. Therefore, in particular, we...

Currently displaying 121 – 140 of 491