A 3D Smale horseshoe in a hyperchaotic discrete-time system.
The aim of these notes is to illustrate, largely by way of examples, how standard ecological models can be put into an evolutionary perspective in order to gain insight in the role of natural selection in shaping life history characteristics. We limit ourselves to phenotypic evolution under clonal reproduction (that is, we simply ignore the importance of genes and sex). Another basic assumption is that mutation occurs on a time scale which is long relative to the time scale of convergence...
Generalizing a result of Bombieri, Masser, and Zannier we show that on a curve in the algebraic torus which is not contained in any proper coset only finitely many points are close to an algebraic subgroup of codimension at least . The notion of close is defined using the Weil height. We also deduce some cardinality bounds and further finiteness statements.
We provide a topological proof that each orientation reversing homeomorphism of the 2-sphere which has a point of period k ≥ 3 also has a point of period 2. Moreover if such a k-periodic point can be chosen arbitrarily close to an isolated fixed point o then the same is true for the 2-periodic point. We also strengthen this result by proving that if an orientation reversing homeomorphism h of the sphere has no 2-periodic point then the complement of the fixed point set can be covered by invariant...
This is a study of the monotone (in parameter) behavior of the ratios of the consecutive intervals in the nested family of intervals delimited by the itinerary of a critical point. We consider a one-parameter power-law family of mappings of the form . Here we treat the dynamically simplest situation, before the critical point itself becomes strongly attracting; this corresponds to the kneading sequence RRR..., or-in the quadratic family-to the parameters c ∈ [-1,0] in the Mandelbrot set. We allow...
Security mechanisms for wireless sensor networks (WSN) face a great challenge due to the restriction of their small sizes and limited energy. Hence, many protocols for WSN are not designed with the consideration of security. Chaotic cryptosystems have the advantages of high security and little cost of time and space, so this paper proposes a secure cluster routing protocol based on chaotic encryption as well as a conventional symmetric encryption scheme. First, a principal-subordinate chaotic function...
In this note we characterize chaotic functions (in the sense of Li and Yorke) with topological entropy zero in terms of the structure of their maximal scrambled sets. In the interim a description of all maximal scrambled sets of these functions is also found.
denotes a (compact, nonsingular) lamination by hyperbolic Riemann surfaces. We prove that a probability measure on is harmonic if and only if it is the projection of a measure on the unit tangent bundle of which is invariant under both the geodesic and the horocycle flows.
We present a description of isochronous centres of planar vector fields X by means of their groups of symmetries. More precisely, given a normalizer U of X (i.e., [X,U]= µ X, where µ is a scalar function), we provide a necessary and sufficient isochronicity condition based on µ. This criterion extends the result of Sabatini and Villarini that establishes the equivalence between isochronicity and the existence of commutators ([X,U]= 0). We put also special emphasis on the mechanical aspects of isochronicity;...
Consider an experiment with d+1 possible outcomes, d of which occur with probabilities . If we consider a large number of independent occurrences of this experiment, the probability of any event in the resulting space is a polynomial in . We characterize those polynomials which arise as the probability of such an event. We use this to characterize those x⃗ for which the measure resulting from an infinite sequence of such trials is good in the sense of Akin.
For continuous maps on the interval with finitely many monotonicity intervals, the kneading theory developed by Milnor and Thurston gives a symbolic description of the dynamics of a given map. This description is given in terms of the kneading invariants which essentially consists in the symbolic orbits of the turning points of the map under consideration. Moreover, this theory also describes a classification of all such maps through theses invariants. For continuous bimodal degree one circle maps,...
For a piecewise monotone map f on a compact interval I, we characterize the ω-limit sets that are bounded away from the post-critical points of f. If the pre-critical points of f are dense, for example when f is locally eventually onto, and Λ ⊂ I is closed, invariant and contains no post-critical point, then Λ is the ω-limit set of a point in I if and only if Λ is internally chain transitive in the sense of Hirsch, Smith and Zhao; the proof relies upon symbolic dynamics. By identifying points of...
This paper presents a sufficient condition for a continuum in ℝn to be embeddable in ℝn in such a way that its image is not an attractor of any iterated function system. An example of a continuum in ℝ2 that is not an attractor of any weak iterated function system is also given.