Page 1 Next

Displaying 1 – 20 of 491

Showing per page

Odometers and Toeplitz systems revisited in the context of Sarnak's conjecture

Tomasz Downarowicz, Stanisław Kasjan (2015)

Studia Mathematica

Although Sarnak's conjecture holds for compact group rotations (irrational rotations, odometers), it is not even known whether it holds for all Jewett-Krieger models of such rotations. In this paper we show that it does, as long as the model is at the same a topological extension, via the same map that establishes the isomorphism, of an equicontinuous model. In particular, we recover (after [AKL]) that regular Toeplitz systems satisfy Sarnak's conjecture, and, as another consequence, so do...

On ( 1 , 1 ) -tensor fields on symplectic manifolds

Anton Dekrét (1999)

Archivum Mathematicum

Two symplectic structures on a manifold M determine a (1,1)-tensor field on M . In this paper we study some properties of this field. Conversely, if A is (1,1)-tensor field on a symplectic manifold ( M , ω ) then using the natural lift theory we find conditions under which ω A , ω A ( X , Y ) = ω ( A X , Y ) , is symplectic.

On a certain map of a triangle

Grzegorz Świrszcz (1998)

Fundamenta Mathematicae

The paper answers some questions asked by Sharkovski concerning the map F:(u,v) ↦ (u(4-u-v),uv) of the triangle Δ = u,v ≥ 0: u+v ≤ 4. We construct an absolutely continuous σ-finite invariant measure for F. We also prove the following strange phenomenon. The preimages of side I = Δ ∩ v=0 form a dense subset F - n ( I ) of Δ and there is another dense set Λ consisting of points whose orbits approach the interval I but are not attracted by I.

On a devil’s staircase associated to the joint spectral radii of a family of pairs of matrices

Ian D. Morris, Nikita Sidorov (2013)

Journal of the European Mathematical Society

The joint spectral radius of a finite set of real d × d matrices is defined to be the maximum possible exponential rate of growth of products of matrices drawn from that set. In previous work with K. G. Hare and J. Theys we showed that for a certain one-parameter family of pairs of matrices, this maximum possible rate of growth is attained along Sturmian sequences with a certain characteristic ratio which depends continuously upon the parameter. In this note we answer some open questions from that paper...

On a dynamical Brauer–Manin obstruction

Liang-Chung Hsia, Joseph Silverman (2009)

Journal de Théorie des Nombres de Bordeaux

Let ϕ : X X be a morphism of a variety defined over a number field  K , let  V X be a K -subvariety, and let  𝒪 ϕ ( P ) = { ϕ n ( P ) : n 0 } be the orbit of a point  P X ( K ) . We describe a local-global principle for the intersection  V 𝒪 ϕ ( P ) . This principle may be viewed as a dynamical analog of the Brauer–Manin obstruction. We show that the rational points of  V ( K ) are Brauer–Manin unobstructed for power maps on  2 in two cases: (1)  V is a translate of a torus. (2)  V is a line and  P has a preperiodic coordinate. A key tool in the proofs is the classical...

On a general difference Galois theory I

Shuji Morikawa (2009)

Annales de l’institut Fourier

We know well difference Picard-Vessiot theory, Galois theory of linear difference equations. We propose a general Galois theory of difference equations that generalizes Picard-Vessiot theory. For every difference field extension of characteristic 0 , we attach its Galois group, which is a group of coordinate transformation.

On a general difference Galois theory II

Shuji Morikawa, Hiroshi Umemura (2009)

Annales de l’institut Fourier

We apply the General Galois Theory of difference equations introduced in the first part to concrete examples. The General Galois Theory allows us to define a discrete dynamical system being infinitesimally solvable, which is a finer notion than being integrable. We determine all the infinitesimally solvable discrete dynamical systems on the compact Riemann surfaces.

On a generalization of the Conley index

Marian Mrozek, James Reineck, Roman Srzednicki (1999)

Banach Center Publications

In this note we present the main ideas of the theory of the Conley index over a base space introduced in the papers [7, 8]. The theory arised as an attempt to solve two questions concerning the classical Conley index. In the definition of the index, the exit set of an isolating neighborhood is collapsed to a point. Some information is lost on this collapse. In particular, topological information about how a set sits in the phase space is lost. The first question addressed is how to retain some of...

Currently displaying 1 – 20 of 491

Page 1 Next