Page 1

Displaying 1 – 5 of 5

Showing per page

Generic points in the cartesian powers of the Morse dynamical system

Emmanuel Lesigne, Anthony Quas, Máté Wierdl (2003)

Bulletin de la Société Mathématique de France

The symbolic dynamical system associated with the Morse sequence is strictly ergodic. We describe some topological and metrical properties of the Cartesian powers of this system, and some of its other self-joinings. Among other things, we show that non generic points appear in the fourth power of the system, but not in lower powers. We exhibit various examples and counterexamples related to the property of weak disjointness of measure preserving dynamical systems.

Genericity of nonsingular transformations with infinite ergodic index

J. Choksi, M. Nadkarni (2000)

Colloquium Mathematicae

It is shown that in the group of invertible measurable nonsingular transformations on a Lebesgue probability space, endowed with the coarse topology, the transformations with infinite ergodic index are generic; they actually form a dense G δ set. (A transformation has infinite ergodic index if all its finite Cartesian powers are ergodic.) This answers a question asked by C. Silva. A similar result was proved by U. Sachdeva in 1971, for the group of transformations preserving an infinite measure. Exploring...

Gibbs-Markov-Young structures*, **, ***

Carla L. Dias (2012)

ESAIM: Proceedings

We discuss the geometric structures defined by Young in [9, 10], which are used to prove the existence of an ergodic absolutely continuous invariant probability measure and to study the decay of correlations in expanding or hyperbolic systems on large parts.

Currently displaying 1 – 5 of 5

Page 1