On natural invariant measures on generalised iterated function systems.
The uniqueness theorem for the ergodic maximal operator is proved in the continous case.
We study weak mixing and double ergodicity for nonsingular actions of locally compact Polish abelian groups. We show that if T is a nonsingular action of G, then T is weakly mixing if and only if for all cocompact subgroups A of G the action of T restricted to A is weakly mixing. We show that a doubly ergodic nonsingular action is weakly mixing and construct an infinite measure-preserving flow that is weakly mixing but not doubly ergodic. We also construct an infinite measure-preserving flow whose...
We consider Schrödinger operators with dynamically defined potentials arising from continuous sampling along orbits of strictly ergodic transformations. The Gap Labeling Theorem states that the possible gaps in the spectrum can be canonically labelled by an at most countable set defined purely in terms of the dynamics. Which labels actually appear depends on the choice of the sampling function; the missing labels are said to correspond to collapsed gaps. Here we show that for any collapsed gap,...