Page 1

Displaying 1 – 4 of 4

Showing per page

Invariant measures for piecewise convex transformations of an interval

Christopher Bose, Véronique Maume-Deschamps, Bernard Schmitt, S. Sujin Shin (2002)

Studia Mathematica

We investigate the existence and ergodic properties of absolutely continuous invariant measures for a class of piecewise monotone and convex self-maps of the unit interval. Our assumption entails a type of average convexity which strictly generalizes the case of individual branches being convex, as investigated by Lasota and Yorke (1982). Along with existence, we identify tractable conditions for the invariant measure to be unique and such that the system has exponential decay of correlations on...

IP-Dirichlet measures and IP-rigid dynamical systems: an approach via generalized Riesz products

Sophie Grivaux (2013)

Studia Mathematica

If ( n k ) k 1 is a strictly increasing sequence of integers, a continuous probability measure σ on the unit circle is said to be IP-Dirichlet with respect to ( n k ) k 1 if σ ̂ ( k F n k ) 1 as F runs over all non-empty finite subsets F of ℕ and the minimum of F tends to infinity. IP-Dirichlet measures and their connections with IP-rigid dynamical systems have recently been investigated by Aaronson, Hosseini and Lemańczyk. We simplify and generalize some of their results, using an approach involving generalized Riesz products.

Isometric extensions, 2-cocycles and ergodicity of skew products

Alexandre Danilenko, Mariusz Lemańczyk (1999)

Studia Mathematica

We establish existence and uniqueness of a canonical form for isometric extensions of an ergodic non-singular transformation T. This is applied to describe the structure of commutors of the isometric extensions. Moreover, for a compact group G, we construct a G-valued T-cocycle α which generates the ergodic skew product extension T α and admits a prescribed subgroup in the centralizer of T α .

Currently displaying 1 – 4 of 4

Page 1