Page 1 Next

Displaying 1 – 20 of 21

Showing per page

Some dynamical properties of S-unimodal maps

Tomasz Nowicki (1993)

Fundamenta Mathematicae

We study 1) the slopes of central branches of iterates of S-unimodal maps, comparing them to the derivatives on the critical trajectory, 2) the hyperbolic structure of Collet-Eckmann maps estimating the exponents, and under a summability condition 3) the images of the density one under the iterates of the Perron-Frobenius operator, 4) the density of the absolutely continuous invariant measure.

Strong q -variation inequalities for analytic semigroups

Christian Le Merdy, Quanhua Xu (2012)

Annales de l’institut Fourier

Let T : L p ( Ω ) L p ( Ω ) be a positive contraction, with 1 < p < . Assume that T is analytic, that is, there exists a constant K 0 such that T n - T n - 1 K / n for any integer n 1 . Let 2 < q < and let v q be the space of all complex sequences with a finite strong q -variation. We show that for any x L p ( Ω ) , the sequence [ T n ( x ) ] ( λ ) n 0 belongs to v q for almost every λ Ω , with an estimate ( T n ( x ) ) n 0 L p ( v q ) C x p . If we remove the analyticity assumption, we obtain an estimate ( M n ( T ) x ) n 0 L p ( v q ) C x p , where M n ( T ) = ( n + 1 ) - 1 k = 0 n T k denotes the ergodic average of T . We also obtain similar results for strongly continuous semigroups ( T t ) t 0 of positive...

Currently displaying 1 – 20 of 21

Page 1 Next