Displaying 41 – 60 of 221

Showing per page

Dimension of measures: the probabilistic approach.

Yanick Heurteaux (2007)

Publicacions Matemàtiques

Various tools can be used to calculate or estimate the dimension of measures. Using a probabilistic interpretation, we propose very simple proofs for the main inequalities related to this notion. We also discuss the case of quasi-Bernoulli measures and point out the deep link existing between the calculation of the dimension of auxiliary measures and the multifractal analysis.

Dynamique des nombres et physique des oscillateurs

Jacky Cresson (2008)

Journal de Théorie des Nombres de Bordeaux

Nous présentons un modèle mathématique permettant de reproduire le spectre expérimental des fréquences dans un composant électronique appelé boucle ouverte. Le spectre semble s’organiser suivant une contrainte de nature diophantienne sur les fréquences. Sa structure peut donc se comprendre via une étude de l’ensemble des fractions continues en fonction de leur longueur et de la taille des quotients partiels.

Entropy and growth of expanding periodic orbits for one-dimensional maps

A. Katok, A. Mezhirov (1998)

Fundamenta Mathematicae

Let f be a continuous map of the circle S 1 or the interval I into itself, piecewise C 1 , piecewise monotone with finitely many intervals of monotonicity and having positive entropy h. For any ε > 0 we prove the existence of at least e ( h - ε ) n k periodic points of period n k with large derivative along the period, | ( f n k ) ' | > e ( h - ε ) n k for some subsequence n k of natural numbers. For a strictly monotone map f without critical points we show the existence of at least ( 1 - ε ) e h n such points.

Ergodic theory for the one-dimensional Jacobi operator

Carmen Núñez, Rafael Obaya (1996)

Studia Mathematica

We determine the number and properties of the invariant measures under the projective flow defined by a family of one-dimensional Jacobi operators. We calculate the derivative of the Floquet coefficient on the absolutely continuous spectrum and deduce the existence of the non-tangential limit of Weyl m-functions in the L 1 -topology.

Currently displaying 41 – 60 of 221