Displaying 581 – 600 of 791

Showing per page

Relative property (T) and linear groups

Talia Fernós (2006)

Annales de l’institut Fourier

Relative property (T) has recently been used to show the existence of a variety of new rigidity phenomena, for example in von Neumann algebras and the study of orbit-equivalence relations. However, until recently there were few examples of group pairs with relative property (T) available through the literature. This motivated the following result: A finitely generated group Γ admits a special linear representation with non-amenable R -Zariski closure if and only if it acts on an Abelian group A (of...

Remarks on the tightness of cocycles

Jon Aaronson, Benjamin Weiss (2000)

Colloquium Mathematicae

We prove a generalised tightness theorem for cocycles over an ergodic probability preserving transformation with values in Polish topological groups. We also show that subsequence tightness of cocycles over a mixing probability preserving transformation implies tightness. An example shows that this latter result may fail for cocycles over a mildly mixing probability preserving transformation.

Residuality of dynamical morphisms

R. Burton, M. Keane, Jacek Serafin (2000)

Colloquium Mathematicae

We present a unified approach to the finite generator theorem of Krieger, the homomorphism theorem of Sinai and the isomorphism theorem of Ornstein. We show that in a suitable space of measures those measures which define isomorphisms or respectively homomorphisms form residual subsets.

Return time statistics for unimodal maps

H. Bruin, S. Vaienti (2003)

Fundamenta Mathematicae

We prove that a non-flat S-unimodal map satisfying a weak summability condition has exponential return time statistics on intervals around a.e. point. Moreover we prove that the convergence to the entropy in the Ornstein-Weiss formula enjoys normal fluctuations.

Rigidity results for Bernoulli actions and their von Neumann algebras

Stefaan Vaes (2005/2006)

Séminaire Bourbaki

Using very original methods from operator algebras, Sorin Popa has shown that the orbit structure of the Bernoulli action of a property (T) group, completely remembers the group and the action. This information is even essentially contained in the crossed product von Neumann algebra. This is the first von Neumann strong rigidity theorem in the literature. The same methods allow Popa to obtain II 1 factors with prescribed countable fundamental group.

Robust transitivity in hamiltonian dynamics

Meysam Nassiri, Enrique R. Pujals (2012)

Annales scientifiques de l'École Normale Supérieure

A goal of this work is to study the dynamics in the complement of KAM tori with focus on non-local robust transitivity. We introduce C r open sets ( r = 1 , 2 , , ) of symplectic diffeomorphisms and Hamiltonian systems, exhibitinglargerobustly transitive sets. We show that the C closure of such open sets contains a variety of systems, including so-calleda priori unstable integrable systems. In addition, the existence of ergodic measures with large support is obtained for all those systems. A main ingredient of...

Rotation sets for subshifts of finite type

Krystyna Ziemian (1995)

Fundamenta Mathematicae

For a dynamical system (X,f) and a function φ : X N the rotation set is defined. The case when (X,f) is a transitive subshift of finite type and φ depends on the cylinders of length 2 is studied. Then the rotation set is a convex polyhedron. The rotation vectors of periodic points are dense in the rotation set. Every interior point of the rotation set is a rotation vector of an ergodic measure.

Ruelle operator with nonexpansive IFS

Ka-Sing Lau, Yuan-Ling Ye (2001)

Studia Mathematica

The Ruelle operator and the associated Perron-Frobenius property have been extensively studied in dynamical systems. Recently the theory has been adapted to iterated function systems (IFS) ( X , w j j = 1 m , p j j = 1 m ) , where the w j ’s are contractive self-maps on a compact subset X d and the p j ’s are positive Dini functions on X [FL]. In this paper we consider Ruelle operators defined by weakly contractive IFS and nonexpansive IFS. It is known that in such cases, positive bounded eigenfunctions may not exist in general. Our theorems...

Semigroup actions on tori and stationary measures on projective spaces

Yves Guivarc'h, Roman Urban (2005)

Studia Mathematica

Let Γ be a subsemigroup of G = GL(d,ℝ), d > 1. We assume that the action of Γ on d is strongly irreducible and that Γ contains a proximal and quasi-expanding element. We describe contraction properties of the dynamics of Γ on d at infinity. This amounts to the consideration of the action of Γ on some compact homogeneous spaces of G, which are extensions of the projective space d - 1 . In the case where Γ is a subsemigroup of GL(d,ℝ) ∩ M(d,ℤ) and Γ has the above properties, we deduce that the Γ-orbits...

Semisimple extensions of irrational rotations

Mariusz Lemańczyk, Mieczysław K. Mentzen, Hitoshi Nakada (2003)

Studia Mathematica

We show that semisimple actions of l.c.s.c. Abelian groups and cocycles with values in such groups can be used to build new examples of semisimple automorphisms (ℤ-actions) which are relatively weakly mixing extensions of irrational rotations.

Sequence entropy and rigid σ-algebras

Alvaro Coronel, Alejandro Maass, Song Shao (2009)

Studia Mathematica

We study relationships between sequence entropy and the Kronecker and rigid algebras. Let (Y,,ν,T) be a factor of a measure-theoretical dynamical system (X,,μ,T) and S be a sequence of positive integers with positive upper density. We prove there exists a subsequence A ⊆ S such that h μ A ( T , ξ | ) = H μ ( ξ | ( X | Y ) ) for all finite partitions ξ, where (X|Y) is the Kronecker algebra over . A similar result holds for rigid algebras over . As an application, we characterize compact, rigid and mixing extensions via relative sequence...

Currently displaying 581 – 600 of 791