Progress of iteration theory since 1981.
Previous Page 2
György Targonski (1995)
Aequationes mathematicae
Boyang Ding, Changming Ding (2016)
Fundamenta Mathematicae
In 1926 Birkhoff defined the center depth, one of the fundamental invariants that characterize the topological structure of a dynamical system. In this paper, we introduce the concepts of prolongational centers and their depths, which lead to a complete family of topological invariants. Some basic properties of the prolongational centers and their depths are established. Also, we construct a dynamical system in which the depth of a prolongational center is a prescribed countable ordinal.
Kurdyka, Krzysztof, Mostowski, Tadeusz, Parusiński, Adam (2000)
Annals of Mathematics. Second Series
Marcin Kulczycki, Piotr Oprocha (2011)
Fundamenta Mathematicae
This article investigates under what conditions nontransitivity can coexist with the asymptotic average shadowing property. We show that there is a large class of maps satisfying both conditions simultaneously and that it is possible to find such examples even among maps on a compact interval. We also study the limit shadowing property and its relation to the asymptotic average shadowing property.
Ali Messaoudi (1998)
Journal de théorie des nombres de Bordeaux
Dans ce travail, nous construisons explicitement deux isomorphismes métriques partout continus. L’un entre le système dynamique symbolique associé à la substitution et une rotation sur le tore ; l’autre, entre le système adique stationnaire [33] associé à la matrice de la substitution et la même rotation. Pour cela, nous étudions les propriétés arithmétiques de la frontière d’un ensemble compact de appelé “fractal de Rauzy”. Les constructions se généralisent aux substitutions de la forme ...
Nataliya Chekhova, Pascal Hubert, Ali Messaoudi (2001)
Journal de théorie des nombres de Bordeaux
Nous étudions certaines propriétés combinatoires, ergodiques et arithmétiques du point fixe de la substitution de Tribonacci (introduite par G. Rauzy) et de la rotation du tore qui lui est associée. Nous établissons une généralisation géométrique du théorème des trois distances et donnons une formule explicite pour la fonction de récurrence du point fixe. Nous donnons des propriétés d’approximation diophantienne du vecteur de la rotation de : nous montrons, que pour une norme adaptée, la suite...
Marcy Barge, Beverly Diamond (2007)
Fundamenta Mathematicae
A substitution φ is strong Pisot if its abelianization matrix is nonsingular and all eigenvalues except the Perron-Frobenius eigenvalue have modulus less than one. For strong Pisot φ that satisfies a no cycle condition and for which the translation flow on the tiling space has pure discrete spectrum, we describe the collection of pairs of proximal tilings in in a natural way as a substitution tiling space. We show that if ψ is another such substitution, then and are homeomorphic if and...
André de Carvalho, Toby Hall (2001)
Journal of the European Mathematical Society
Two dynamical deformation theories are presented – one for surface homeomorphisms, called pruning, and another for graph endomorphisms, called kneading – both giving conditions under which all of the dynamics in an open set can be destroyed, while leaving the dynamics unchanged elsewhere. The theories are related to each other and to Thurston’s classification of surface homeomorphisms up to isotopy.
W. R. Brian (2015)
Fundamenta Mathematicae
Recall that a P-set is a closed set X such that the intersection of countably many neighborhoods of X is again a neighborhood of X. We show that if 𝔱 = 𝔠 then there is a minimal right ideal of (βℕ,+) that is also a P-set. We also show that the existence of such P-sets implies the existence of P-points; in particular, it is consistent with ZFC that no minimal right ideal is a P-set. As an application of these results, we prove that it is both consistent with and independent of ZFC that the shift...
Solomyak, B.M. (2005)
Zapiski Nauchnykh Seminarov POMI
Peter E. Kloeden, Thomas Lorenz (2014)
Nonautonomous Dynamical Systems
A pullback incremental attraction, a nonautonomous version of incremental stability, is introduced for nonautonomous systems that may have unbounded limiting solutions. Its characterisation by a Lyapunov function is indicated.
Jérôme Buzzi (2010)
Annales de l’institut Fourier
Entropy-expanding transformations define a class of smooth dynamics generalizing interval maps with positive entropy and expanding maps. In this work, we build a symbolic representation of those dynamics in terms of puzzles (in Yoccoz’s sense), thus avoiding a connectedness condition, hard to satisfy in higher dimensions. Those puzzles are controled by a «constraint entropy» bounded by the hypersurface entropy of the aforementioned transformations.The analysis of those puzzles rests on a «stably...
Previous Page 2