Mapping properties of Fatou components.
During the last ten some years, many research works were devoted to the chaotic behavior of the weighted shift operator on the Köthe sequence space. In this note, a sufficient condition ensuring that the weighted shift operator defined on the Köthe sequence space exhibits distributional -chaos for any and any is obtained. Under this assumption, the principal measure of is equal to 1. In particular, every Devaney chaotic shift operator exhibits distributional -chaos for any .
We prove that an invertible zero-dimensional dynamical system has an invariant measure of maximal entropy if and only if it is an extension of an asymptotically h-expansive system of equal topological entropy.
We study the homomorphism induced on cohomology by the maximal equicontinuous factor map of a tiling space. We will see that in degree one this map is injective and has torsion free cokernel. We show by example, however, that, in degree one, the cohomology of the maximal equicontinuous factor may not be a direct summand of the tiling cohomology.
This paper is a continuation of [1], where a explicit description of the scrambled sets of weakly unimodal functions of type 2∞ was given. Its aim is to show that, for an appropriate non-trivial subset of the above family of functions, this description can be made in a much more effective and informative way.
We introduce the notion of metric entropy for a nonautonomous dynamical system given by a sequence (Xn, μn) of probability spaces and a sequence of measurable maps fn : Xn → Xn+1 with fnμn = μn+1. This notion generalizes the classical concept of metric entropy established by Kolmogorov and Sinai, and is related via a variational inequality to the topological entropy of nonautonomous systems as defined by Kolyada, Misiurewicz, and Snoha. Moreover, it shares several properties with the classical notion...
Let X be a closed manifold of dimension 2 or higher or the Hilbert cube. Following Uspenskij one can consider the action of Homeo(X) equipped with the compact-open topology on , the space of maximal chains in , equipped with the Vietoris topology. We show that if one restricts the action to M ⊂ Φ, the space of maximal chains of continua, then the action is minimal but not transitive. Thus one shows that the action of Homeo(X) on , the universal minimal space of Homeo(X), is not transitive (improving...
We prove that on a metrizable, compact, zero-dimensional space every -action with no periodic points is measurably isomorphic to a minimal -action with the same, i.e. affinely homeomorphic, simplex of measures.
We show that there are (1) nonhomogeneous metric continua that admit minimal noninvertible maps but have the fixed point property for homeomorphisms, and (2) nonhomogeneous metric continua that admit both minimal noninvertible maps and minimal homeomorphisms. The former continua are constructed as quotient spaces of the torus or as subsets of the torus, the latter are constructed as subsets of the torus.
We construct a continuous non-invertible minimal transformation of an arbitrary solenoid. Since solenoids, as all other compact monothetic groups, also admit minimal homeomorphisms, our result allows one to classify solenoids among continua admitting both invertible and non-invertible continuous minimal maps.
As was known to H. Poincaré, an orientation preserving circle homeomorphism without periodic points is either minimal or has no dense orbits, and every orbit accumulates on the unique minimal set. In the first case the minimal set is the circle, in the latter case a Cantor set. In this paper we study a two-dimensional analogue of this classical result: we classify the minimal sets of non-resonant torus homeomorphisms, that is, torus homeomorphisms isotopic to the identity for which the rotation...