Displaying 61 – 80 of 163

Showing per page

Modular dynamical systems on networks

Lee DeVille, Eugene Lerman (2015)

Journal of the European Mathematical Society

We propose a new framework for the study of continuous time dynamical systems on networks. We view such dynamical systems as collections of interacting control systems. We show that a class of maps between graphs called graph fibrations give rise to maps between dynamical systems on networks. This allows us to produce conjugacy between dynamical systems out of combinatorial data. In particular we show that surjective graph fibrations lead to synchrony subspaces in networks. The injective graph fibrations,...

Modulus of analytic classification for the generic unfolding of a codimension 1 resonant diffeomorphism or resonant saddle

Christiane Rousseau, Colin Christopher (2007)

Annales de l’institut Fourier

We consider germs of one-parameter generic families of resonant analytic diffeomorphims and we give a complete modulus of analytic classification by means of the unfolding of the Écalle modulus. We describe the parametric resurgence phenomenon. We apply this to give a complete modulus of orbital analytic classification for the unfolding of a generic resonant saddle of a 2-dimensional vector field by means of the unfolding of its holonomy map. Here again the modulus is an unfolding of the Martinet-Ramis...

Morales-Ramis Theorems via Malgrange pseudogroup

Guy Casale (2009)

Annales de l’institut Fourier

In this article we give an obstruction to integrability by quadratures of an ordinary differential equation on the differential Galois group of variational equations of any order along a particular solution. In Hamiltonian situation the condition on the Galois group gives Morales-Ramis-Simó theorem. The main tools used are Malgrange pseudogroup of a vector field and Artin approximation theorem.

Normal forms with exponentially small remainder and Gevrey normalization for vector fields with a nilpotent linear part

Patrick Bonckaert, Freek Verstringe (2012)

Annales de l’institut Fourier

We explore the convergence/divergence of the normal form for a singularity of a vector field on n with nilpotent linear part. We show that a Gevrey- α vector field X with a nilpotent linear part can be reduced to a normal form of Gevrey- 1 + α type with the use of a Gevrey- 1 + α transformation. We also give a proof of the existence of an optimal order to stop the normal form procedure. If one stops the normal form procedure at this order, the remainder becomes exponentially small.

Normalization of Poincaré singularities via variation of constants.

Timoteo Carletti, Alessandro Margheri, Massimo Villarin (2005)

Publicacions Matemàtiques

We present a geometric proof of the Poincaré-Dulac Normalization Theorem for analytic vector fields with singularities of Poincaré type. Our approach allows us to relate the size of the convergence domain of the linearizing transformation to the geometry of the complex foliation associated to the vector field.

Currently displaying 61 – 80 of 163